

UCT PRODUCT CATALOG

Founded in 1986, UCT has grown to be a respected leader in the drug testing, pharmaceutical, clinical, environmental and agricultural industries. Our wide range of highly reproducible solid phase extraction columns allow the chromatographer a consistent extraction technique, and our expertise in silane manufacturing allows greater control of the chemical processes involved in producing our high quality bonded phases. We manufacture our complete product line of bonded silica sorbents, packaged in a variety of formats, including SPE columns, 96 & 48 well plates, universal cartridges and micro centrifuge tubes. We also offer a variety of SPE accessories? including derivatizing reagents, GC liners, and manifolds. Recently we launched several new product lines: SELECTRA® HPLC columns, SELECTRAZYME® Beta glucuronidase hydrolysis enzyme and Comprehensive Analytical Toxicology Kits. Our commitment to ensuring the satisfaction of our customers is accomplished by delivering on our promises: top-quality, dependable solid phase extraction and chromatography products, and unmatched technical support.

CUSTOMER SERVICE

PRICES AND TERMS

Our prices are subject to change without notice. The price in effect when we receive your order will apply. All prices are in US Dollars and are F.O.B. Lewistown, PA 17044. Terms of payment are net 30 days.

MINIMUM ORDERS

We welcome all orders, therefore, we do not have a minimum order requirement. When ordering, please include your purchase order number, complete "Ship To" and "Bill To" address, catalog number, quantity, and description of product(s). Also include your name and a phone number where you can be reached should we have any questions concerning your order.

SHIPMENTS

Normal processing is within 24 hours after receipt of an order. Unless special shipping requests have been made, our trained staff will send all orders by UPS Ground service. The appropriate shipping charges (freight & insurance costs) will be added to the invoice, unless otherwise instructed by the customer.

SPECIAL PRICING

We offer special pricing for volume purchases and standing orders. These discounts apply to bonded phase extraction column purchases only. Please call a sales representative for more information on special pricing qualifications.

RETURN POLICY

Our Quality Manager will handle all returns. Before returning merchandise, please call to obtain a return authorization number from the quality manager. We will need to know the reason for the return, date of purchase, purchase order number and invoice number in order to issue a return authorization number. Return merchandise must be received before a credit can be issued. Returns will not be accepted after 90 days. A restocking fee of 25% of the price paid, or a minimum of \$25.00 (whichever is greater) will be charged on all returns.

WARRANTY

All products manufactured by UCT are guaranteed against defects in materials and workmanship for a period of 90 days after shipment. UCT will replace any items that prove to be defective during this time period. The exclusive remedy requires the end user to first advise UCT of the defective product by phone or in writing and must include order number, the lot number and the shipping date.

To initiate this action, photographs of the product, including packaging and labeling of the containers, must be submitted to the UCT Representative for approval. With approval a return authorization can be initiated, and must be received within 30 days. Once the materials arrive at UCT a further inspection of the materials must be completed and accepted by our Quality Manager prior to further action of credits or replacement. UCT's total liability is limited to the replacement cost of UCT products.

This warranty does not apply to damage resulting from misuse.

Contact Us

Email: <u>info@unitedchem.com</u>
Web: <u>www.unitedchem.com</u>

UCT, Inc. Phone: 800.385.3153
2731 Bartram Rd. Fax: 215.785.1226
Bristol, PA 19007 www.unitedchem.com

TABLE OF CONTENTS

Customer Service	3
Use of Bonded Phases for Sample Preparation	6
Functionalized Silica-Based Phases	7
Organic Sample Matrix and Aqueous Sample Matrix Guides	8
CLEAN SCREEN® Sample Prep Products	
Mechanism of CLEAN SCREEN®	
Copolymeric Bonded Phases for Drug Abuse Testing DAU / THC	
CLEAN SCREEN® GHB / ETG / BNZ	
CLEAN SCREEN XCEL®	
CLEAN SCREEN FASt [®]	
Refine™ 96 Well Ultra-Filtration Plate	
XtrackT [®] Gravity Flow Bonded Phases	
CLEAN SCREEN® RSV	
STYRE SCREEN® Polymeric Resin Extraction Columns	25-28
CLEAN-UP* Solid Phase Extraction Phases	
Hydrophobic Extraction Columns	
Hydrophilic Extraction Columns	
Ion Exchange Extraction Columns	
Copolymeric Extraction Columns	
Covalent Extraction Columns	50
SELECTRASORB™ Bulk Sorbents	51-54
Manifolds	55-66
Positive Pressure Manifold 2.0	55-56
Positive Pressure Manifold	57-58
96 Well Plate Positive Pressure Manifold	59
Universal Vacuum Manifold	60-61
Glass Block Vacuum Manifold	62-64
SPe-VAP°	65-66
Reagents	67-78
SELECTRA-SIL® Derivatizing Reagents	67-73
Abalonase™ ULTRA	74-75
Abalonase™ and Abalonase™ + purified Beta Glucuronidase	76
SELECTRAZYME® Beta Glucuronidase	77
Select pH Buffer Pouches	78
SELECTRA® HPLC Columns	79-81
Reservoirs	82-84
Frits	85
GC Liners	86-87

CLEAN SCREE	EN° 9-15
CLEAN SCREE XCEL°	EN- 16-17
CLEAN SCREE FASt°	EN- 18-19
Refine™	20
XtrackT°	21-22
CLEAN SCREI RSV	EN- 23-24
STYRE SCREE	:N° 25-28
CLEAN-UP°	29-50
SELECTRASOR	B™ 51-54
Manifolds	55-66
SPeVAP°	65-66
Reagents	67-78
HPLC	79-81

Use of Bonded Phases for Sample Preparation

SORBENT CONDITIONING AND SOLVATION

The majority of the sorbents in UCT columns and plates are shipped dry. Sorbents with hydrophobic functionality need to be solvated in order to interact efficiently and reproducibly with aqueous matrices. Sample capacity is severely reduced on a dry column.

At low vacuum, about 3" Hg, add 1.5 mL of methanol or acetonitrile per 100 mg of sorbent to the column. Release the vacuum or begin flushing immediately upon completion. The more air which passes through the sorbent before sample loading, the less solvated the sorbent will be. If a very clean baseline is required, pre-rinse the sorbent bed with elution solvent. This can improve the LOD and LOQ.

Apply 1 mL deionized or distilled water per 100 mg sorbent to remove excess solvent. This will remove excess solvent which may interfere with hydrophobic bonding. A momentary high vacuum, from 5" to 8" Hg, may be necessary to restart flow. At 2.5" Hg, the column will resist air displacement (meaning the vacuum may be left on without drying the sorbent bed). If the sorbent is accidentally dried; then resolvate and reflush.

When using ion exchange sorbents, apply 1 mL of buffer to the column after flushing. This ensures that the sorbent pH is optimal for the sorbent analyte interaction desired.

Where ion exchange interactions are involved, follow guidelines concerning pKa, pH and ionic binding. Use the same vacuum guidelines as described for flushing as outlined above.

SAMPLE PREPARATION AND APPLICATION

Solid phase extraction may employ hydrophobic, polar, ionic or a combination of mechanisms. Frequently, an internal standard is added in order to provide quantifiable results. Sample application can be optimized by removing particulates via centrifugation or filtration. Viscous matrices may also be diluted with water or buffers (ensure that sample is at the correct pH for the desired retention mechanism being employed).

On ion exchange sorbents, sample analytes must be oppositely charged from the sorbent functional phase. Negatively charged (-) anionic compounds are drawn to positively charged (+) anion exchange sorbents. Positively charged (+) cationic compounds bind to negatively charged (-) cation exchange sorbents. During sample application, the analyte binds by displacing a counter ion on the sorbent.

The sample is applied to the sorbent bed at a rate of 1 mL / minute. A momentary increase in vacuum may be needed to initiate flow.

SORBENT WASHING AND ELUTION

Ideal washing removes as many interferences as possible while retaining the analyte(s). Ideal elution recovers 100% of the analyte(s) while leaving behind interferences.

Make certain the sorbent is dry when changing between aqueous solvents and organic solvents.

HYDROPHOBIC AND POLAR ANALYTES

The best approach towards retaining analytes bound to sorbents through hydrophobic or polar interactions during the wash step is to use a solvent mixture which is strong enough to remove the highest possible amount of matrix interferences without drawing off any analyte of interest. (Note that wash pH may have an effect on both cleanup and recovery and must be controlled during this step – keep in mind the analyte and sorbent pKa's when choosing a wash solvent).

Sample elution should be employed using an organic solvent that is strong enough to elute all of the analyte of interest without pulling off any remaining matrix interferences that may still be bound to the sorbent. Organic solvents in combination with a pH change may be employed in order to disrupt analyte binding.

ION EXCHANGE

lonic bonds are strong enough to allow the analyte to remain bound while interferences are washed away with high percentages (up to 100%) of polar or nonpolar organic solvents. The pH of the elution solvent will also affect sample clean up.

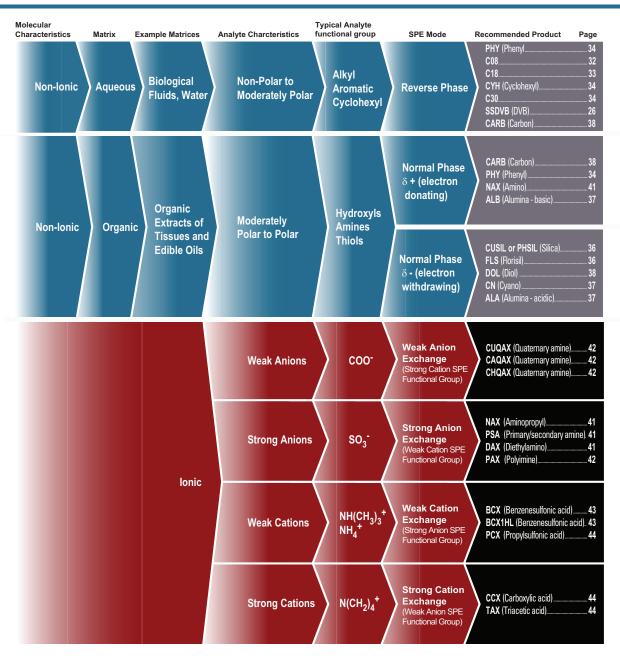
Remember, for best analyte recoveries, remain 2 pH units from the relevant pKa of the analyte and sorbent, both of which need to remain charged for ionic retention.

Elute with aqueous buffers containing a stronger counter ion than the analyte or by changing pH to disrupt the ionic attraction. The pH of the elution solvent should be changed so that either 100% of the analyte or 100% of the SPE stationary phase is now in a neutral state. Make sure the elution solvent has enough organic character to overcome any adsorption to the packing material.

COPOLYMERIC EXCHANGE

For ionically bound analytes, use washes of high organic strength to remove interferences retained by hydrophobic (solvent strength dependent) interactions. If the analyte is also capable of hydrophobic binding, remove polar interferences ionically similar to the analyte by using aqueous or weak aqueous/organic washes while disrupting ionic (pH and ionic strength dependent) binding. Elute by simultaneously disrupting ionic and hydrophobic interactions.

Functionalized Silica-Based Phases


REVERSE PHASE				
	HYDROPHOBIC			
Sorbent	Sorbent Code	% Organic		
C2 Ethyl	C02	6.60		
C4 n-Butyl	CN4	8.50		
C8 Octyl	C08	11.10		
C18 Octa- decyl	C18	21.70		
C30 Tricontyl	C30	20.00		
Cyclohexyl	CYH1	11.60		
Phenyl	PHY1	11.00		

NORMAL PHASE					
I	HYDROPHILIC				
Sorbent	Sorbent Code	% Organic			
Silica	SIL1	N/A			
Diol	DOL1	8.00			
Cyanopropyl	CNP1	6.90			
Florisil®	FLS	N/A			
Alumina, Acidic	ALA	N/A			
Alumina, Basic	ALB	N/A			
Alumina, Neutral	ALN	N/A			
Carbon	CARB	N/A			

ION EXCHANGE					
	ANION EXC	HANGE			
Sorbent	Sorbent Code	рКа	% Organic	Exchange (meq/g)	
Aminopropyl (1° amine)	NAX1	9.8	6.65	0.310	
N-2 Aminoethyl (1° & 2° amine)	PSA1	10.1, 10.9	9.70	0.320	
Diethylamino	DAX1	10.6	8.40	0.280	
Quaternary Amine Chloride	QAX1	Always Charged	8.40	0.250	
Quaternary Amine Hydroxide	CHQAX1	Always Charged	8.40	0.250	
Quaternary Amine Acetate	CAQAX1	Always Charged	8.40	0.250	
Quaternary Amine Formate	CFQAX1	Always Charged	8.40	0.250	
Polyimine	PAX	Always Charged	13.50	0.250	
	CATION EX	CHANGE			
Sorbent	Sorbent Code	рКа	% Organic	Exchange (meq/g)	
Carboxylic Acid	CCX1	4.8	9.10	0.170	
Propylsulfonic Acid	PCX1	<1	7.10	0.180	
Benzenesulfonic Acid	BCX1	Always Charged	11.00	0.320	
Benzenesulfonic Acid, High Load	BCX1HL	Always Charged	15.00	0.650	
Triacetic Acid	TAX		7.61	Anion 0.17/Cation 0.06	

COPOLYMERIC PHASES					
	MULTIFUNCTIONAL				
Sorbent	Sorbent Code	% Organic	Exchange		
Aminopropyl + C8	NAX2	12.30	0.163		
Quaternary Amine + C8	QAX2	13.60	0.160		
Carboxylic Acid + C8	CCX2	2.50	0.105		
Propylsulfonic Acid + C8	PCX2	14.62	0.114		
Benzenesulfonic Acid + C8	BCX2	12.30	0.072		
Cyanopropyl + C8	CNP2	14.60	0.163		
Cyclohexyl + C8	CYH2	N/A	N/A		

Sorbent Selection Guide

Co-polymeric Phases

UCT has created a series of true mixed mode functional phases. These phases incorporate two different funtional groups, typically a non-polar or hydrophobic functional group paired with an ion exchange functional group. A major use of these phases is for clinical or forensic separations. They are ideal for separating drug compounds which are frequently basic to neutral in nature from biological matrices.

	DAU p.12 THC p.13	BNZ p.15 XCEL I p.17	XCEL II p.18
Other Specialty Phases	GHB p.14 ETG p.15	FASt p.19	

CLEAN SCREEN® SAMPLE PREP PHASES

Mechanisms of Clean Screen® DAU

When a sample is loaded onto the sorbent at pH 6, many carboxylic acid functionalities present in this sample are ionized. This creates a repulsion between the sorbent and many sample borne interferences, thereby reducing the likelihood of their adsorbing onto the sorbent. At this pH, ibuprofen and barbiturates are not ionized and are hydrophobically adsorbed on to the sorbent (figure 1). At the same time, drugs with amine functionalities such as cocaine and phencyclidine adsorb on to the sorbent via both hydrophobic and ionic attraction.

The sorbent can then be washed with water or weak aqueous buffers at or below pH 6 without risking the loss of the analytes. After drying the column, it is possible to elute the hydrophobically bound analytes using solvents of minimal polarity such as methylene chlorodie or a hexane/ethyl acetate mixture (figure 2). Cationic analytes will remain bound to the sorbent. Many compounds of intermediate polarity and potential interferences will also remain on the column. The majority of these potential interferences can be removed by using a methanol wash.

Cationic analytes bound to the column can be eluted after another drying step. The drying steps are necessary to remove water which would have prevented the water immiscible elution solvents from optimally interacting with the analytes (figure 3).

To elute the cationic analytes, an organic solvent with a high pH should be used. A methylene chloride/isopropanol/ammonium hydroxide mixture will simultaneously disrupt these ionic interactions and successfully elute the desired compound (figure 4).

www.unitedchem.com

Analytical demand for a more efficient, robust and clean extraction of drugs from biological matrices led to the development of CLEAN SCREEN* sorbents. Since 1986, CLEAN SCREEN* has led the clinical and forensic industries with dependable and reproducible Solid Phase Extraction products and applications. CLEAN SCREEN* columns are used extensively in many applications including:

- Post Mortem Investigations
- Criminal Investigations
- Urine Drug Testing

- Therapeutic Drug Monitoring
- Medical Drug Screening
- · Athletic Drug Testing

Note: If performing extractions out of viscous matrices, such as tissue or horse urine, turn to page 21, the location of UCT XtrackT° high flow sorbents.

CLEAN SCREEN® DAU (Drugs of Abuse)

CLEAN SCREEN® DAU is a copolymerized sorbent, utilizing both a reverse (C8) phase and an ion exchange (benzenesulfonic acid) phase bonded to the same particle. The mixed mode nature allows for maximum selectivity for the extraction of acids, neutrals and bases. This flexibility and versatility is ideal for both screening and confirmation analyses of virtually all drug categories.

Organic Loading = 12.4%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$ Exchange Capacity = 0.077 meq/g

		COLUMNS		
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU [®] Tips Provided	Part Number
1	50	100	No	CSDAU1L1
1	130	100	No	CSDAU131
3	30	50	No	CSDAU033
3	50	50	No	CSDAU1L3
3	130	50	Yes	CCDAU133
3	130	50	No	CSDAU133
3	200	50	No	CSDAU203
3	300	50	No	CSDAU303
3	500	50	No	CSDAU503
6	150	50	No	CSDAU(150)03
6	200	50	Yes	CCDAU206
6	200	50	No	CSDAU206
6	500	50	Yes	CCDAU506
6	500	50	No	CSDAU506
6	1000	30	No	CSDAU1M6
10	50	50	No	ZSDAU005
10	130	50	No	ZSDAU013
10	200	50	Yes	ZCDAU020
10	200	50	No	ZSDAU020
10	300	50	No	ZSDAU030
15	500	50	No	CSDAU515
		WELL PLATE	S	
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number
48	100	1	NO	WIMDAU11
96	50	1	NO	WSHDAU105
96	100	1	NO	WSHDAU11
96	100	1	YES	WSHDAU11-LD
96	200	1	NO	WSHDAU12
96	200	1	YES	WSHDAU12-LD

Note: Proper conditioning of the SPE column prior to sample application will result in accurate recovery, reduced interference and particulate removal. Conditioning is performed by adding methanol, followed by DI water and finally sample buffer.

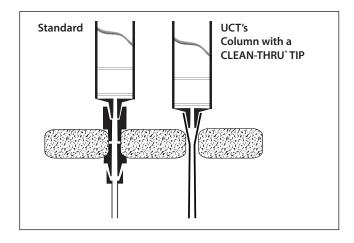
CLEAN SCREEN® THC

CLEAN SCREEN® THC sorbent is copolymerized on a rigid, purified silica gel support. The two functional groups include a reverse phase and a primary amine ion exchanger. This sorbent is useful for analyzing THC and its metabolites. Additionally, its dual functionality is useful for acids and hydrophobic compounds.

CLEAN SCREEN® THC

Organic Loading = 12.1%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$ Exchange Capacity = 0.144 meq/g

COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU® Tips Provided	Part Number
1	100	100	NO	CSTHC101
1	130	100	NO	CSTHC131
1	130	100	YES	CCTHC131
3	200	50	NO	CSTHC203
3	200	50	YES	CCTHC203
3	300	50	NO	CSTHC303
3	300	50	YES	CCTHC303
3	500	50	NO	CSTHC503
3	500	50	YES	CCTHC503
6	200	50	NO	CSTHC206
6	200	50	YES	CCTHC206
6	500	50	NO	CSTHC506
6	1000	30	NO	CSTHC1M6
6	1000	30	YES	CCTHC1M6
10	130	50	NO	ZSTHC013
10	130	50	YES	ZCTHC013
10	200	50	NO	ZSTHC020
10	200	50	YES	ZCTHC020


CLEAN SCREEN® GHB

CLEAN SCREEN® GHB sorbent is used for the extraction of free Gammahydoxy butyric acid (GHB). The small polar nature of the molecule and the lack of a UV chromaphore complicate the chromatographic and spectrophotometric analysis of GHB. Chemically, GHB is unstable and readily forms Gamma-butyrolactone when heated in acid conditions. Most analytical methods are based upon the interconversion to the lactone and chemical derivatization to form the TMS derivative. This sorbent isolates and extracts free GHB.

Organic Loading = 11.9%Surface Area = $500 \text{ m}^2/\text{g}$

Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$ Exchange Capacity = 0.06 meq/g

COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU® Tips Provided	Part Number	
3	200	50	NO	CSGHB203	
6	200	50	NO	CSGHB206	
10	200	50	NO	ZSGHB020	
10	200	50	YES	ZCGHB020	

Note: UCT SPE columns are produced to the highest quality standards. A pre-rinse of an SPE column with an elution solution prior to column conditioning may enhance the performance of a method as it will serve to remove any materials that may have ingressed or adsorbed prior to use.

CLEAN SCREEN® ETG

CLEAN SCREEN* ETG solid phase extraction sorbent is available exclusively from UCT. It is a proprietary carbon packing material for the extraction and concentration of ethyl glucuronide. Sample extracts can be analyzed by either GC/MS or LC/MS.

COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU® Tips Provided	Part Number	
3	200	50	NO	CSETG203	
3	200	50	YES	CCETG203	
10	400	50	NO	ZSETG040	
		WELL PLA	ATES		
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number	
96	100	1	NO	WSHETG11	
96	100	1	YES	WSHETG11-LD	

CLEAN SCREEN® BNZ

CLEAN SCREEN® BNZ solid phase extraction sorbent is a unique sorbent designed for benzodiazepine extractions, with specific focus on 7-amino benzodiazepines.

Organic Loading = 10.8%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60 ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU [®] Tips Provided	Part Number
3	200	50	NO	CSBNZ203
3	200	50	YES	CCBNZ203
6	200	50	NO	CSBNZ206
10	200	50	NO	ZSBNZ020
10	300	50	NO	ZSBNZ030
10	300	50	YES	ZCBNZ030

Clean Screen® XCEL I Quick Prep

CLEAN SCREEN XCEL* solid phase extraction columns are designed to reduce the number of steps in the extraction. The result is a column that reduces sample prep times and minimizes the amount of solvent necessary. Additional advantages include reduced sample size and improved cleanliness and recovery.

Benefits:

- · Conditioning of sorbent is eliminated
- · Decreased extraction steps
- · Reduced sample size
- · Increased recovery values
- · Increased sensitivity

CLEAN SCREEN XCEL® I

The XCEL I sorbent will extract a wide array of basic drugs including benzodiazepines and opiates.

Organic Loading = 12.4%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60 ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS					
	ibe ne (mL)	Sorbent Amount (mg)	Units per Pack	Part Number		
	1	130	100	CSXCE111		
	3	130	50	CSXCE103		
	3	130	500	CSXCE103-D		
	6	130	50	CSXCE106		
	6	130	500	CSXCE106-D		
	6	200	50	CSXCE206		
1	10	130	50	ZSXCE010		
1	10	130	500	ZSXCE010-D		
		WELL PL	ATES			
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number		
48	130	1	NO	WSH48XCE11		
96	80	1	YES	WSH96XCE108-LD		
96	130	1	NO	WSH96XCE11		
96	130	1	YES	WSH96XCE11-LD		

Clean Screen® XCEL II Quick Prep

CLEAN SCREEN XCEL® II

The XCEL II sorbent is designed solely for rapid and clean extraction of the THC metabolite, THC- Δ^9 -carboxylic acid.

Organic Loading = 16.7%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60 ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS					
	Tube ume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number		
	1	130	100	CSXCE211		
	3	130	50	CSXCE2103		
	3	130	500	CSXCE2103-D		
	6	130	50	CSXCE2106		
	6	130	500	CSXCE2106-D		
	6	200	50	ZSXCE2010		
		WELL PLATES	5			
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number		
48	130	1	NO	WSH48XCE211		
96	80	1	YES	WSH96XCE208-LD		
96	130	1	NO	WSH96XCE211		

Clean Screen FASt® Filter & Shoot

CLEAN SCREEN FASt* employs a process that uses positive pressure, solid phase sorbent bed and small pore frits to quickly and efficiently prepare urine samples for LC/MS analysis. The methodology eliminates timely centrifugation, reduces matrix suppression effects and removes particulates greater than 1 µm. Samples can be diluted at a ratio as low as 1:1, which is useful for detecting analytes at very low concentrations. CLEAN SCREEN FASt* products are available in both columns and well plates.

Benefits:

- · Eliminate centrifuge and sample transfer steps
- · Lower costs by decreasing turn-around time
- · Reduce instrument and LC column maintenance

CLEAN SCREEN FASt®

The FASt® sorbent is for the extraction of drugs from urine.

Organic Loading = 8.4%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)		Units per Pack	Part Number		
3	200		50	CSFAS203		
3	200		500	CSFAS203-D		
10	200		50	ZSFAS020		
		WELL P	LATE			
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number		
96	100	1	YES	WSH96FAS11-10LD		

Clean Screen FASt® Filter & Shoot

CLEAN SCREEN FASt® THC

The FASt® THC sorbent is for the extraction of the THC metabolite from urine.

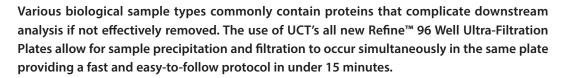
Organic Loading = 10.69%

Average Pore Size = 60 Å

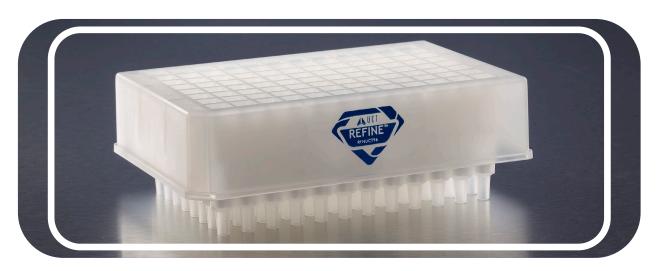
Surface Area = 500 m²/g Pore Volume = 0.77 cm³/g

COLUMNS							
Tube Volume (mL)	Sorbe Amount		Units per Pack	Part Number			
3	200		50	CSFASTH203			
10	200		50	ZSFASTH020			
	WELL PLATE						
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number			
96	100	1	YES	WSH96FASTH11-10LD			

CLEAN SCREEN FASt® EtG


The FASt® EtG sorbent is for the extraction of EtG/EtS metabolites from urine.

Organic Loading = 10.69%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å


	COLUMNS						
Tube Volume (mL)	Sorbe Amount		Units per Pack	Part Number			
3	200		50	CSFASETG203			
	WELL PLATE						
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number			
96	100	1	YES	WSH96FASETG11-10LD			

Refine™ 96 Well Ultra-Filtration Plate

Your Solution for Maximizing Protein Precipitation, Filtration, & Direct In-well Urinary Enzyme Hydrolysis.

- Can be used with a wide range of biological sample types, such as plasma and urine.
- · Accommodates in-well urinary enzyme hydrolysis and can withstand high incubation temperatures.
- Provides additional clean-up and filtration for cannabis analysis.
- Processes 96 samples in less than 20 minutes.
- Long-drip tips reduce sample errors and risk of inter-well contamination and cross-talk.
- Works on all current manual or automated processing instrumentation.

Part Number	Description	Quantity
RFNUCT96	96 WELL ULTRA-FILTRATION PLATE	1

UCT also offers this proprietary ultra-filtration technology in 1 and 3 mL SPE column formats.

Part Number	Description	Quantity
RFNSPE1	1 mL ULTRA-FILTRATION COLUMN	100
RFNSPE3	3 mL ULTRA-FILTRATION COLUMN	50

Xtrackt® Gravity Flow Columns

XtrackT° GRAVITY FLOW SPE COLUMNS

 $XtrackT^{\circ}$ large particle bonded phases allow for uniform gravity flow for most blood and urine samples. A single column provides extraction for a broad spectrum of compounds with selective elution of acid neutrals, steroids and bases. $XtrackT^{\circ}$ large particle (80-200 μ m) silica gels are available with hydrophobic, hydrophilic, ion exchange or copolymeric phases, including DAU mixed mode. $XtrackT^{\circ}$ is recommended for viscous sample matrices or for gravity flow applications.

GRAVITY FLOW XtrackT° DAU SORBENT (XRDAH)

Organic Loading = 12.4%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60 ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$ Cation Exchange = 0.077 meg/g

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU® Tips Provided	Part Number		
3	150	50	NO	XRDAH(150)03		
3	200	50	NO	XRDAH203		
3	200	50	YES	XCDAH203		
3	300	50	NO	XRDAH303		
3	500	50	NO	XRDAH503		
3	500	50	YES	XCDAH503		
6	200	50	NO	XRDAH206		
6	500	50	NO	XRDAH506		
10	130	50	NO	XRDAH13Z		
10	130	500	NO	XRDAH13Z-D		
10	200	50	NO	XRDAH20Z		
10	200	50	YES	XCDAH20Z		
10	500	50	NO	XRDAH50Z		
15	500	50	NO	XRDAH515		
15	500	50	YES	XCDAH515		
15	1000	50	NO	XRDAHM15		

GRAVITY FLOW XtrackT° ENDCAPPED C18 COLUMNS (XRODH)

Organic Loading = 21.5% Average Pore Size = 60 ÅSurface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU® Tips Provided	Part Number		
3	500	50	NO	XRODH503		
3	500	50	YES	XCODH503		
6	500	50	NO	XRODH506		
6	500	50	YES	XCODH506		
6	1000	50	NO	XRODHM06		
15	500	50	NO	XRODH515		
15	1000	50	NO	XRODHM15		
25	5000	20	NO	XRODH5M25		
75	10000	10	NO	XRODH10M75		

Xtrackt® Gravity Flow Columns

GRAVITY FLOW XtrackT° BENZENESULFONIC ACID SORBENT (XRBSH)

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU® Tips Provided	Part Number		
10	500	50	NO	XRBSH50Z		
15	500	50	NO	XRBSH515		

GRAVITY FLOW XtrackT° CARBOXYLIC ACID SORBENT (XRCCH)

COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU [®] Tips Provided	Part Number	
3	500	50	NO	XRCCH503	
6	500	50	NO	XRCCH506	
15	1000	50	NO	XRCCHM15	

GRAVITY FLOW XtrackT° PRIMARY/SECONDARY AMINE SORBENT (XRPSH)

COLUMNS				
Tube Sorbent Units per CLEAN-THRU® Part Number Volume (mL) Amount (mg) Pack Tips Provided				
3	300	50	NO	XRPSH303

GRAVITY FLOW XtrackT° HEAT TREATED SILICA SORBENT (XRSIHT)

	COLUMNS				
Tube Volume (mL)	Part Number				
10	500	50	NO	XRSIHT50Z	
15	3000	24	NO	XRSIHT13M15	

^{*}XRSIHT13M15 also comes with Flange Caps and Luer Tips

Clean Screen® RSV Reduced Solvent Volume

Reduced Solvent Volume extraction sorbents are small particle (5-20 μ m) micro bed packed columns which offer the advantages of disc technology while maintaining the proven track record of our conventional SPE particle technology. Results demonstrate that therapeutic and abused drugs in urine and blood matrices can be extracted with cleanliness, high recoveries and consistent reproducibility by using the Reduced Solvent Volume Extraction Column.

Advantages of Reduced Solvent Volume sorbents:

- Reduces total liquid volumes by 75%
- Lower cost per extraction
- Faster extraction times
- Lowers disposal cost
- Increases automated throughput
- Reduces eluate volume by 50%
- · Greater linear range

- · Reduces dry down times
- Minimizes exposure to organic solvents
- Excellent flow characteristics
- Less flow restriction from matrix proteins
- Reliable for automated process
- High capacity

Clean Screen® RSV Reduced Solvent Volume

CLEAN SCREEN® DAU REDUCED SOLVENT VOLUME SORBENT (CSDAUA)

CLEAN SCREEN® RSV DAU SORBENT is copolymerized on a rigid, purified silica gel support. The two functional groups include a reverse phase, and an ion exchanger, benzenesulfonic acid. This column is commonly used for analyzing a wide range of drugs of abuse, including acidic, basic and neutral drugs.

Organic Loading = 12.4%

Average Pore Size = 60Å

Exchange Capacity = 0.077 meq/g

Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU [®] Tips Provided	Part Number			
1	50	100	NO	CSDAUA51			
1	50	100	YES	CCDAUA51			
3	80	50	NO	CSDAUA83			
3	80	50	YES	CCDAUA83			
10	80	50	NO	ZSDAUA08			
10	80	50	YES	ZCDAUA08			

CLEAN SCREEN® THC REDUCED SOLVENT VOLUME SORBENT (CSTHCA)

CLEAN SCREEN® RSV THC is copolymerized on a rigid, purified silica gel support. The two functional groups include a reverse phase, and an ion exchanger, aminopropyl. This column is used for analyzing THC and its metabolites.

Organic Loading = 12.1%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

Exchange Capacity = 0.144 meq/g

COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	CLEAN-THRU [®] Tips Provided	Part Number	
1	50	100	NO	CSTHCA51	
3	50	50	NO	CSTHCA53	
3	80	50	NO	CSTHCA83	
3	80	50	YES	CCTHCA83	
10	80	50	NO	ZSTHCA08	
10	80	50	YES	ZCTHCA08	
		WELL P	PLATE		
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number	
96	50	1	NO	WSHTHCA105	

STYRE SCREEN® POLYMERIC RESIN EXTRACTION SORBENTS

STYRE SCREEN® extraction sorbents are formulated with an ultra clean, highly cross-linked styrene and divinylbenzene polymer sorbent. The sorbent can be functionalized with many of the same phases as our silica based sorbents. Possibilities include standard hydrophilic, hydrophobic, or ion exchange functionalities as well as copolymeric phases such as the DBX or THC phases. STYRE SCREEN® particles have an average particle size of 30 microns. This polymeric sorbent has a very high analyte capacity. This higher capacity translates into a lower bed mass. Lower bed mass means extractions can be run at faster flow rates and with less solvent usage. The STYRE SCREEN® sorbent also eliminates the need for an initial column conditioning step. All these attributes ultimately result in improved cost to the end user.

Advantages of STYRE SCREEN®

- No conditioning step
- High and reproducible recoveries
- Highly cross-linked sorbent minimizes bead swelling
- Reduced sorbent mass

- Improved flow rates
- pH stable from 1 14
- Reduced solvent use
- High sorbent capacity
- Methods for NIDA/SAMHSA 5 Drugs

STYRE SCREEN® DVB – Polystyrene Divinylbenzene

Application: Retention of neutral and aromatic compounds, useful for screening applications where a broad range of analytes is to be extracted

	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number				
1	10	100	SSDVB0X1				
1	30	100	SSDVB031				
1	100	100	SSDVB111				
3	30	50	SSDVB033				
6	50	50	SSDVB056				
6	200	30	SSDVB206				
6	500	30	SSDVB506				
10	100	50	SSDVB11Z				

	WELL PLATE					
Number of wells	Sorbent Amount (mg)	Units per pack	Extended Drip Tip	Part Number		
48	60	1	NO	WSH48DVB406		
96	30	1	NO	WSHDVB403		
96	50	1	NO	WSHDVB405		
96	60	1	NO	WSHDVB406		

STYRE SCREEN® HLB - Hydrophilic Lipophilic Balance - Wettable Copolymer

Application: Retention of neutral and aromatic compounds with

enhanced bonding capabilities for polar analytes.

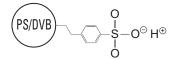
Structure:

	COLUMNS					
Tube Volume (mL	Sorb) Amoun		Units per Pack	Part Number		
1	30)	100	SSHLB031		
3	30)	50	SSHLB033		
3	60)	50	SSHLB063		
6	60)	30	SSHLB066		
6	10	0	30	SSHLB106		
6	20	0	30	SSHLB206		
6	50	0	30	SSHLB503		
		WELL PL	LATE			
Number of wells	Sorbent Amount (mg)	Units per pack	Extended Drip Tip	Part Number		
96	30	1	NO	WSHHLB403		
96	60	1	NO	WSHHLB406		

www.unitedchem.com

STYRE SCREEN® DBX – Octadecyl (C18) and Benzenesulfonic Acid – Mixed Mode

Application: Retention of weakly basic and hydrophobic compounds



	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number				
1	30	100	SSDBX031				
3	30	50	SSDBX033				
3	60	50	SSDBX063				
6	50	50	SSDBX056				
6	150	50	SSDBX(150)06				
6	200	50	SSDBX206				
10	50	50	SSDBX05Z				

	WELL PLATE					
Number of wells	Sorbent Amount (mg)	Units per pack	Extended Drip Tip	Part Number		
96	30	1	NO	WSHDBX403		

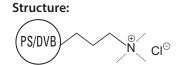
STYRE SCREEN® BCX – Benzensulfonic Acid – Cation Exchange

Application: Retention of weakly basic compounds

Structure:

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	30	100	SSBCX031			
3	30	50	SSBCX033			
3	60	50	SSBCX063			
6	50	50	SSBCX056			

STYRE SCREEN® C18 – Reverse Phase


Application: Retention of hydrophobic compounds

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	30	100	SSC18031			
3	30	50	SSC18033			
6	50	50	SSC18056			
6	200	50	SSC18206			
6	300	50	SSC18306			
6	500	50	SSC18506			
75	5000	10	SSC1815M75			

STYRE SCREEN® QAX – Quaternary Amine – Anion Exchange

Application: Retention of weakly acidic compounds

Structure: Proprietary

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	30	100	SSQAX031			
3	30	50	SSQAX033			
6	50	50	SSQAX056			
6	150	50	SSQAX(150)06			

STYRE SCREEN® THC

Application: Retention of THC and THC metabolites (THC-delta-9,

THC-hydroxy metabolite and THC-carboxy metabolite)

	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number				
1	30	100	SSTHC031				
3	60	50	SSTHC063				
6	60	50	SSTHC066				
6	100	50	SSTHC116				
10	60	50	SSTHC06Z				
10	100	50	SSTHC11Z				

www.unitedchem.com

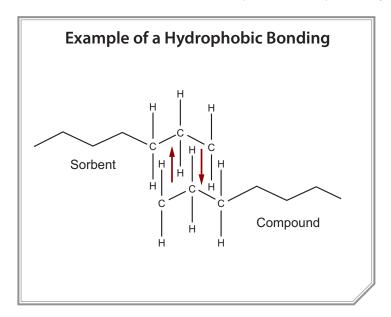
CLEAN-UP[®] SOLID PHASE EXTRACTION COLUMNS

HYDROPHOBIC / HYDROPHILIC / ION EXCHANGE / COPOLYMERIC

Clean-Up® Solid Phase Extraction Columns

HYDROPHOBIC EXTRACTION SORBENTS

This sorbent is composed of a silica backbone bonded with hydrocarbon chains. It is used to extract compounds which exhibit non-polar or neutral characteristics out of complex matrices. The C18 phase is the most widely used for non-polar interactions because of its non-selective nature; C18 will extract a large number of compounds with differing chemical properties. To enhance selectivity, UCT offers a variety of hydrophobic sorbents. Several chain configurations are available as well as endcapped and unendcapped versions.


One can extract alkanes, alkenes, aromatic and neutral compounds using CLEAN-UP® sorbents. These compounds are washed with aqueous solvent with some polar organic solvent included. The compounds are then eluted with solvent ranging from non-polar to polar organic solvents depending upon the analyte.

www.unitedchem.com

Clean-Up® Solid Phase Extraction Columns

MECHANISM OF HYDROPHOBIC BONDING

Compounds are retained by non-polar interactions from polar solvents or matrix environments. They are bound by dispersion forces / van de Waals forces. Elution, or disruption, of the non-polar interactions is achieved by solvents or solvent mixtures with sufficient non-polar characteristics. Some polar solvents, such as acetonitrile have enough non-polar characteristics to disrupt nonpolar binding causing the elution of a compound from the sorbent. Methanol can be used as well, although it should be noted that it will take off both polar and non-polar analytes of interest as well as interferences.

Hydrophobic Sorbents & Structures				
Sorbent	Structure			
C2 Ethyl	-SiCH ₂ CH ₃			
C4 n-Butyl	-Si(CH ₂) ₃ CH ₃			
C8 Octyl	-Si(CH ₂) ₇ CH ₃			
C18 Octadecyl	-Si(CH ₂) ₁₇ CH ₃			
C30 Tricontyl	-Si(CH ₂) ₂₉ CH ₃			
Cyclohexyl	-Si()			
Phenyl	-Si —			

ENDCAPPED VS. UNENDCAPPED

Bonded phases are manufactured by the reaction of organosilanes with activated silica. During the polymerization reaction of carbon chains to the silica backbone, a very stable silyl ether linkage forms. Our unendcapped columns allow hydroxyl sites to remain, thus making these columns slightly hydrophilic. In order to decrease this slight polarity, these hydroxyl sites are deactivated. Proprietary bonding techniques ensure that these sites are 100% reacted, leading to a complete endcapping. Because there are no hydroxyl sites left, our endcapped columns are more hydrophobic than our unendcapped columns.

CLEAN-UP° C2, ETHYL SORBENT

Organic Loading = 6.2%Average Pore Size = 60ÅSurface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

CLEAN-UP° C8, OCTYL SORBENT

Organic Loading = 11.1% Average Pore Size = 60ÅSurface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS						
Tube Vol- ume (mL)	Sorbent Amount (mg)	Units per Pack	Endcapped	Part Number		
1	100	100	YES	CEC02111		
1	100	100	NO	CUC02111		
3	200	50	YES	CEC02123		
3	200	50	NO	CUC02123		
3	500	50	NO	CUC02153		
6	500	30	YES	CEC02156		
6	1000	30	YES	CEC021M6		
10	100	50	YES	CEC0211Z		

CLEAN-UP° C4, n-BUTYL SORBENT

Organic Loading = 8.5%Average Pore Size = 60ÅSurface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS					
Tube Vol- ume (mL)	Sorbent Amount (mg)	Units per Pack	End- capped	Part Number		
1	100	100	YES	CECN4111		
3	200	50	YES	CECN4123		
6	500	50	YES	CECN4156		
6	1000	30	YES	CECN41M6		
75	10000	10	YES	CECN4110M75		

COLUMNS						
Tube Vol- ume (mL)	Sorbent Amount (mg)	Units per Pack	Endcapped	Part Number		
1	50	100	YES	CEC081L1		
1	50	100	NO	CUC081L1		
1	100	100	YES	CEC08111		
3	50	50	YES	CEC081L3		
3	50	50	NO	CUC081L3		
3	100	50	YES	CEC08113		
3	100	50	NO	CUC08113		
3	200	50	YES	CEC08123		
3	200	50	NO	CUC08123		
3	500	50	YES	CEC08153		
3	500	50	NO	CUC08153		
6	500	50	YES	CEC08156		
6	500	50	NO	CUC08156		
6	1000	30	YES	CEC081M6		
6	1000	30	NO	CUC081M6		
10	100	50	YES	CEC0811Z		
10	200	50	YES	CEC0812Z		
10	500	50	YES	CEC0815Z		
15	2000	20	YES	CEC0812M15		
25	5000	20	YES	CEC0815M25		
75	10000	10	YES	CEC08110M75		

CLEAN-UP° C18, OCTADECYL SORBENT

Organic Loading = 21.5%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS					
Tube Valume (ml.)	Coubont Amount (mg)	Unite ner Deek	Endoonnod	Dout Number	
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Endcapped	Part Number	
1	50	100	YES	CEC181L1	
1	50	100	NO	CUC181L1	
1	100	100	YES	CEC18111	
1	100	100	NO	CUC18111	
3	50	50	YES	CEC181L3	
3	50	50	NO	CUC181L3	
3	100	50	YES	CEC18113	
3	100	50	NO	CUC18113	
3	200	50	YES	CEC18123	
3	200	50	NO	CUC18123	
3	500	50	YES	CEC18153	
3	500	50	NO	CUC18153	
3	1000	50	NO	CUC181M3	
6	200	50	YES	CEC18126	
6	500	50	YES	CEC18156	
6	500	50	NO	CUC18156	
6	1000	30	YES	CEC181M6	
6	1000	30	NO	CUC181M6	
6	2000	30	YES	CEC1812M6	
10	100	50	YES	CEC1811Z	
10	100	50	NO	CUC1811Z	
10	200	50	YES	CEC1812Z	
10	200	50	NO	CUC1812Z	
10	500	50	YES	CEC1815Z	
10	500	50	NO	CUC1815Z	
15	2000	20	YES	CEC1812M15	
15	2000	20	NO	CUC1812M15	
25	5000	20	YES	CEC1815M25	
25	5000	20	NO	CUC1815M25	

WELL PLATES					
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Endcapped	Part Number
96	50	1	NO	YES	WSHCEC18105
96	100	1	NO	YES	WSHCEC1811
96	100	1	NO	NO	WSHCUC1811
96	200	1	NO	YES	WSHCEC1812

CLEAN-UP° C30, TRICONTYL SORBENT

Organic Loading = 20.0%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS						
Tube Vol- ume (mL)	Sorbent Amount (mg)	Units per Pack	Endcapped	Part Number		
1	100	100	YES	CEC30111		
3	100	50	YES	CEC30113		
3	200	50	YES	CEC30123		
6	200	50	YES	CEC30126		
6	500	50	YES	CEC30156		
6	1000	30	YES	CEC301M6		
10	200	50	YES	CEC3012Z		
10	500	50	YES	CEC3015Z		

CLEAN-UP° CYH, CYCLOHEXYL SORBENT

Organic Loading = 11.6%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

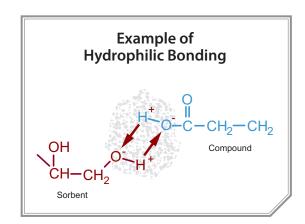
	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	End- capped	Part Number		
1	100	100	YES	CECYH111		
3	200	50	YES	CECYH123		
3	200	50	NO	CUCYH123		
3	500	50	YES	CECYH153		
6	500	50	YES	CECYH156		
6	1000	30	YES	CECYH1M6		
15	2000	20	YES	CECYH12M15		

CLEAN-UP° PHY, PHENYL SORBENT

Organic Loading = 10.8%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Endcapped	Part Number			
1	50	100	YES	CEPHY1L1			
1	100	100	YES	CEPHY111			
1	100	100	NO	CUPHY111			
3	200	50	YES	CEPHY123			
3	200	50	NO	CUPHY123			
3	500	50	YES	CEPHY153			
3	500	50	NO	CUPHY153			
6	500	50	YES	CEPHY156			
6	500	50	NO	CUPHY156			
6	1000	30	YES	CEPHY1M6			
10	100	50	YES	CEPHY11Z			
10	200	50	YES	CEPHY12Z			
10	200	50	NO	CUPHY12Z			

	WELL PLATE					
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	End- capped	Part Number	
96	50	1	NO	YES	WSH- PHY105	


CLEAN-UP® HYDROPHILIC NORMAL PHASE EXTRACTION SORBENTS

This sorbent is composed of a silica backbone bonded with carbon chains containing polar functional groups. Examples of groups that have this functionality are amines, hydroxyls and carbonyls.

Mechanism of Hydrophilic Bonding

Compounds are retained on hydrophilic sorbents through polar interactions including hydrogen bonding, pi-pi or dipole-dipole interactions. These types of interactions occur when the distribution of electrons between individual atoms in functional groups is unequal, causing negative and positive polarity. Compounds typically extracted on a hydrophilic column include analytes which have polar groups, such as amines, hydroxyls and carbonyls. Strong polar solvents, in turn, elute the analyte off of the sorbent.

Hydrophilic Sorbents & Structures					
Sorbent	Structure				
Silica	-SiOH				
Diol	-Si(CH ₂) ₃ OCH ₃ OHCH ₂ OH				
Cyanopropyl	-Si(CH ₂) ₃ CN				

CLEAN-UP° UNBONDED SILICA, ACID WASHED

Organic Loading = N/ASurface Area = $500 \text{ m}^2/g$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	100	100	CUSIL111			
3	100	50	CUSIL113			
3	200	50	CUSIL123			
3	500	50	CUSIL153			
6	100	50	CUSIL116			
6	500	50	CUSIL156			
6	1000	30	CUSIL1M6			
10	100	50	CUSIL11Z			
10	500	50	CUSIL15Z			
15	2000	20	CUSIL12M15			
25	5000	20	CUSIL15M25			
75	10000	10	CUSIL110M75			
75	20000	10	CUSIL120M75			

CLEAN-UP° PHARMA-SIL°

Organic Loading = N/ASurface Area = $500 \text{ m}^2/g$ Average Pore Size = 60ÅPore Volume = $0.82 \text{ cm}^3/\text{g}$

COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number	
1	50	100	PHSIL1L1	
1	100	100	PHSIL111	
3	200	50	PHSIL123	
6	500	50	PHSIL156	
6	1000	30	PHSIL1M6	
15	2000	20	PHSIL12M15	
25	5000	20	PHSIL15M25	

CLEAN-UP° FLORISIL°

Florisil® is the trademark of U.S. Silica Co.

COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number	
1	100	100	CUFLS111	
3	200	50	CUFLS123	
3	500	50	CUFLS153	
6	500	50	CUFLS156	
6	1000	30	CUFLS1M6	
10	100	50	CUFLS11Z	
10	200	50	CUFLS12Z	
10	500	50	CUFLS15Z	
15	1000	30	CUFLS1M15	
15	2000	30	CUFLS12M15	
25	5000	20	CUFLS15M25	
75	10000	10	CUFLS110M75	

Clean-Up® Hydrophobic Phase

CLEAN-UP° ALUMINA, ACIDIC

	COLUMNS				
Tube Volume (mL)		Sorbent Amount (mg)		nits per Pack	Part Number
1	100			100	CUALA111
3	200			50	CUALA123
3	500			50	CUALA153
6	500	500		50	CUALA156
6	1000			30	CUALA1M6
15	2000			20	CUALA12M15
25	5000			20	CUALA15M25
75	10000)		10	CUALA110M75
		WEI	LL PL	ATE	
Number of Wells	Sorbent Amount (mg)	р	its er ick	Extended Drip Tip	Part Number
96	50	•	1	NO	WSHALA05

CLEAN-UP° ALUMINA, NEUTRAL

	COLUMNS				
Tube Volume (mL)	Sorbent Units per Amount (mg) Pack		Part Number		
1	50	100	CUALN1L1		
1	100	100	CUALN111		
3	200	50	CUALN123		
3	500	50	CUALN153		
6	500	50	CUALN156		
6	1000	30	CUALN1M6		
10	200	50	CUALN12Z		
10	500	50	CUALN15Z		
15	2000	20	CUALN12M15		
25	5000	20	CUALN15M25		
75	10000	10	CUALN110M75		

CLEAN-UP° ALUMINA, BASIC

	COLUMNS					
Tube Volume (mL)	Sorben Amoun (mg)	-		its per Pack		Part Number
3	200			50		CUALB123
3	500			50		CUALB153
6	500			50		CUALB156
6	1000	1000		30		CUALB1M6
10	200	200		50		CUALB12Z
10	500	500		50		CUALB15Z
15	2000			20	(CUALB12M15
25	5000			20	(CUALB15M25
75	10000			10	C	CUALB110M75
		WE	LL PL	ATE		
Number of Wells	Sorbent Amount (mg)	р	nits er ack	Extende Drip Tip		Part Number
96	50		1	NO		WSHALB105

CLEAN-UP° CN, CYANOPROPYL

 $\begin{array}{ll} \mbox{Organic Loading} = 9.0\% & \mbox{Average Pore Size} = 60 \mbox{ Å} \\ \mbox{Surface Area} = 500 \mbox{ m}^2/\mbox{g} & \mbox{Pore Volume} = 0.77 \mbox{ cm}^3/\mbox{g} \\ \end{array}$

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	End- capped	Part Number		
1	50	100	YES	CECNP1L1		
1	100	100	YES	CECNP111		
1	100	100	NO	CUCNP111		
3	100	50	NO	CUCNP113		
3	200	50	YES	CECNP123		
3	200	50	NO	CUCNP123		
3	500	50	YES	CECNP153		
6	500	50	YES	CECNP156		
6	500	50	NO	CUCNP156		
6	1000	30	YES	CECNP1M6		
6	1000	30	NO	CUCNP1M6		
10	200	50	YES	CECNP12Z		
15	2000	20	YES	CECNP12M15		
15	2000	20	NO	CUCNP12M15		
75	10000	10	YES	CECNP110M75		

Clean-Up® Hydrophobic Phase

CLEAN-UP® DIOL

Organic Loading = 8.0%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60 ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number	
1	100	100	CUDOL111	
3	200	50	CUDOL123	
3	500	50	CUDOL153	
6	500	50	CUDOL156	
15	2000	20	CUDOL12M15	
25	5000	20	CUDOL15M25	

CLEAN-UP° CARBON, GRAPHITIZED NON-POROUS, 120/400 MESH

Carbon supports have been used to isolate extremely polar organic compounds. Carbon adsorbtion involves a hydrophobic mechanism with a high surface area and ion exchange. This interaction can happen in a wide range of polar and non-polar solvents.

	COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number		
1	50	100	CUCARBL1		
3	150	50	CUCARB1L3		
3	200	50	CUCARB23		
3	250	50	CUCARB2L3		
3	500	50	CUCARB53		
6	250	30	CUCARB26		
6	500	30	CUCARB56		
6	1000	20	CUCARBM6		
10	500	50	CUCARB5Z		
15	1000	20	CUCARBM15		

Clean-Up® Ion Exchange Phase

MECHANISM OF ION EXCHANGE BONDING

Compounds are retained on the sorbent through ionic bonds. Therefore, it is essential that the sorbent and the analyte to be extracted are charged. Generally, the number of molecules with charged cationic groups increases at pH values below the molecules pKa value. The number of molecules with charged anionic groups decreases at pH values below the molecule's pKa value. To ensure 99% or more ionization, the pH should be at least two pH units below the pKa of the cation and two pH units above the pKa of the anion. Elution occurs by using a solvent to raise the pH above the pKa of the cationic group or to lower the pH below the pKa of the anion to disrupt retention. At this point, the sorbent or compound is neutralized.

This sorbent is composed of a silica backbone bonded with carbon chains terminated by a negatively or positively charged functional group. Ion exchange interactions occur between a sorbent that carries a charge and a compound of opposite charge.

This electrostatic interaction is reversible by neutralizing the sorbent and/or analyte. Ion exchange bonds can also be disrupted by the introduction of a counter ion to compete with the analyte for binding sites on the sorbent.

Clean-Up® Hydrophobic Phase

ION EXCHANGE SORBENTS & STRUCTURES

Sorbent	Structure	рКа
Anion Exchangers		
Aminopropyl (1° amine)	-Si-(CH ₂) ₃ NH ₃ ⁺	9.8
N-2 Aminoethyl (1° & 2° amine)	-Si-(CH ₂) ₃ NH ₂ ⁺ (CH ₂) ₂ NH ₃ ⁺	10.1, 10.9
Diethylamino (3° amine)	-Si-(CH2)3NH+(CH2CH3)2	10.6
Quaternary Amine Chloride	-Si-(CH ₂) ₃ N ⁺ (CH ₃) ₃ Cl ⁻	Always charged
Quaternary Amine Hydroxide	-Si-(CH ₂)3N $^{+}$ (CH ₃) ₃ OH	Always charged
Quaternary Amine Acetate	-Si-(CH ₂) ₃ N ⁺ (CH ₃) ₃ CH ₃ COO	Always charged
Quaternary Amine Formate	-Si-(CH ₂) ₃ N ⁺ (CH ₃) ₃ HCOO	Always charged
Polyimine	-Si-(CH ₂) ₃ -R $^{-}$ [NHCH ₃ CH ₃] _x	
Cation Exchangers		
Carboxylic Acid	-Si-CH ₂ COOH	
Propylsulfonic Acid	-Si-(CH ₂) ₃ SO ₃ H	<1
Benzenesulfonic Acid	-Si-(CH ₂) ₂ -⟨◯⟩ - SO ₃ H	Always charged
Benzenesulfonic Acid High Load	-Si-(CH ₂) ₂ -⟨◯⟩ SO ₃ H	Always charged
Triacetic Acid	-Si-(CH ₂) ₃ NH-(CH ₂) ₂ N(CH ₂ COOH) ₂	
	СН ₂ СООН	

	Anion Excha	inge Sorbent	Cation Exchange Sorbent		
	Goal pH		Goal	рН	
WASH	To promote bonding be- tween sorbent and analyte	> Analyte pKa or < Sorbent pKa	To promote bonding between sorbent and analyte	< Analyte pKa or > Sorbent pKa	
ELUTION	To disrupt bonding between sorbent and analyte	< Analyte pKa or > Sorbent pKa	To disrupt bonding between sorbent and analyte	> Analyte pKa or < Sorbent pKa	

Percent of Compound in Ionic State						
Functionality	Ionization	pH units away from pKa				
		2 < pKa	1 < pKa	At pKa	1 > pKa	2 > pKa
Acid	Anionic (-)	1	9	50	91	99
Base	Cationic (+)	99	91	50	9	1

Clean-Up® Hydrophobic Phase

CLEAN-UP® **AMINOPROPYL SORBENT**

Organic Loading = 6.65% Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å

Anion Exchange = 0.28 meq/g

	COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number		
1	50	100	CUNAX1L1		
1	100	100	CUNAX111		
3	200	50	CUNAX123		
3	500	50	CUNAX153		
6	500	50	CUNAX156		
6	1000	30	CUNAX1M6		
10	100	50	CUNAX11Z		
10	200	50	CUNAX12Z		
10	500	50	CUNAX15Z		
15	2000	20	CUNAX12M15		
25	5000	20	CUNAX15M25		
75	10000	10	CUNAX110M75		

	WELL PLATES				
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number	
48	100	1	NO	WIMNAX11	
48	300	1	NO	WIMNAX13	
96	50	1	NO	WSHNAX105	
96	100	1	NO	WSHNAX11	
96	200	1	NO	WSHNAX12	
96	300	1	NO	WSHNAX13	

CLEAN-UP® PRIMARY/SECONDARY AMINE SORBENT

Organic Loading = 11.1% Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å Anion Exchange = 1.100 meq/g

COLUMNS					
Tube Volume (mL)	Sorbent Units per Amount (mg) Pack		Part Number		
1	50	100	CUPSA1L1		
1	100	100	CUPSA111		
3	200	50	CUPSA123		
3	500	50	CUPSA153		
6	500	50	CUPSA156		
6	1000	30	CUPSA1M6		
10	100	50	CUPSA11Z		
10	200	50	CUPSA12Z		
15	2000	20	CUPSA12M15		
75	10000	10	CUPSA110M75		

WELL PLATE					
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number	
96	100	1	NO	WSHPSA11	

CLEAN-UP® DIETHYLAMINO SORBENT

Organic Loading = 9.5% Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60Å Anion Exchange = 0.315 meq/g

Pore Volume = 0.77 cm ³ /g						
	COLUMNS					
Tube Volume (mL)	Sorbent Amount (m		ts per ack	Part Number		
1	100	1	00	CUDAX111		
3	200		50	CUDAX123		
3	500		50	CUDAX153		
6	500		50	CUDAX156		
6	1000	;	30	CUDAX1M6		
10	500		50	CUDAX15Z		
15	2000		20	CUDAX12M15		
25	5000		20	CUDAX15M25		
WELL PLATE						
Number of Wells	Sorbent Amount	Units per Pack	Extended Drip Tip	Part Number		

Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number		
96	50	1	NO	WSHDAX105		

Clean-Up® Anion Extraction Sorbents

CLEAN-UP° QUATERNARY AMINE WITH CHLORIDE COUNTER ION SORBENT

Organic Loading = 8.40%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅAnion Exchange = 0.230 meq/g

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	50	100	CUQAX1L1			
1	100	100	CUQAX111			
3	200	50	CUQAX123			
3	500	50	CUQAX153			
6	500	50	CUQAX156			
6	1000	30	CUQAX1M6			
10	100	50	CUQAX11Z			
10	200	50	CUQAX12Z			
15	2000	20	CUQAX12M15			

	WELL PLATE					
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number		
96	100	1	YES	WSHQAX11-LD		

CLEAN-UP° QUATERNARY AMINE WITH HYDROXIDE COUNTER ION SORBENT

Organic Loading = 8.40%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅAnion Exchange = 0.230 meq/g

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	50	100	CHQAX1L1			
1	100	100	CHQAX111			
3	200	50	CHQAX123			
3	500	50	CHQAX153			
6	500	50	CHQAX156			
6	1000	30	CHQAX1M6			
10	100	50	CHQAX11Z			
10	200	50	CHQAX12Z			
15	2000	20	CHQAX12M15			

CLEAN-UP° QUATERNARY AMINE WITH ACETATE COUNTER ION SORBENT

Organic Loading = 8.40%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å Anion Exchange = 0.230 meq/g

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	100	100	CAQAX111			
3	200	50	CAQAX123			
3	500	50	CAQAX153			
6	1000	30	CAQAX1M6			
10	200	50	CAQAX12Z			
10	500	50	CAQAX15Z			
25	5000	20	CAQAX15M25			

CLEAN-UP° POLYIMINE SORBENT

Organic Loading = 14.25%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅAnion Exchange = 0.880 meq/g

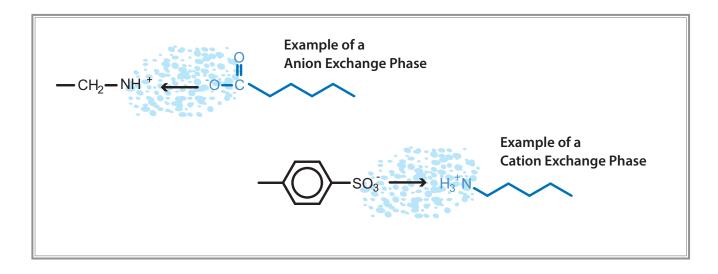
	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	100	100	CUPAX111			
3	200	50	CUPAX123			
3	500	50	CUPAX153			
6	150	50	CUPAX(150)6			
6	500	50	CUPAX156			
6	1000	30	CUPAX1M6			

	WELL PLATES					
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number		
48	300	1	NO	WIMPAX13		
96	100	1	NO	WSHPAX11		
96	200	1	NO	WSHPAX12		
96	300	1	NO	WSHPAX13		

Clean-Up® Cation Extraction Sorbents

CLEAN-UP° BENZENESULFONIC ACID SORBENT

Organic Loading = 10.69%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅCation Exchange = 0.320 meq/g


COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number		
1	50	100	CUBCX1L1		
1	100	100	CUBCX111		
3	200	50	CUBCX123		
3	500	50	CUBCX153		
6	100	50	CUBCX116		
6	500	50	CUBCX156		
6	1000	30	CUBCX1M6		
10	100	50	CUBCX11Z		
10	200	50	CUBCX12Z		
10	500	50	CUBCX15Z		
15	1000	30	CUBCX1M15		
15	2000	30	CUBCX12M15		
75	10000	10	CUBCX110M75		

WELL PLATES					
Number Sorbent Units of Amount per Wells (mg) Pack Extended Drip Tip					
48	100	1	NO	WIMBCX11	
96	50	1	NO	WSHBCX105	

CLEAN-UP° BENZENESULFONIC ACID HIGH LOAD SORBENT

Organic Loading = 16.50%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å
Cation Exchange = 0.650 meq/g

	COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	100	100	CUBCX1HL11			
3	200	50	CUBCX1HL23			
3	500	50	CUBCX1HL53			
6	150	50	CUBCX1HL(150)06			
6	500	50	CUBCX1HL56			
6	1000	50	CUBCX1HL1M6			
10	100	50	CUBCX1HL1Z			
10	200	50	CUBCX1HL2Z			
15	2000	20	CUBCX1HL2M15			
75	10000	10	CUBCX1HL10M75			

Clean-Up® Cation Extraction Sorbents

CLEAN-UP° CARBOXYLIC ACID SORBENT

Organic Loading = 8.75%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅCation Exchange = 0.043 meq/g

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	50	100	CUCCX1L1			
1	100	100	CUCCX111			
3	200	50	CUCCX123			
3	500	50	CUCCX153			
6	500	50	CUCCX156			
6	1000	30	CUCCX1M6			
10	100	50	CUCCX11Z			
10	200	50	CUCCX12Z			
15	2000	20	CUCCX12M15			
25	5000	20	CUCCX15M25			

WELL PLATES							
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extend- ed Drip Tip	Part Number			
48	100	1	NO	WIMCCX11			
48	300	1	NO	WIMCCX13			
96	50	1	NO	WSHCCX105			
96	100	1	NO	WSHCCX11			
96	100	1	YES	WSHCCX11-LD			

CLEAN-UP° TRIACETIC ACID SORBENT

Organic Loading = 7.50%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å Cation Exchange = 0.10 meq/g Anion Exchange = 0.15 meq/g

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	100	100	CUTAX111			
3	200	50	CUTAX123			
3	500	50	CUTAX153			
6	300	50	CUTAX136			
6	500	50	CUTAX156			
6	1000	30	CUTAX1M6			
10	200	50	CUTAX12Z			
75	10000	10	CUTAX110M75			

CLEAN-UP° PROPYLSULFONIC ACID SORBENT

Organic Loading = 7.00%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å
Cation Exchange = 0.180 meq/g

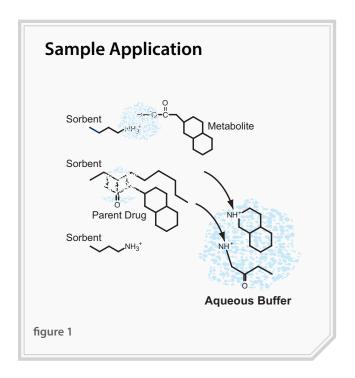
	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number				
1	100	100	CUPCX111				
3	200	50	CUPCX123				
3	500	50	CUPCX153				
6	500	50	CUPCX156				
6	1000	30	CUPCX1M6				
10	100	50	CUPCX11Z				
10	200	50	CUPCX12Z				

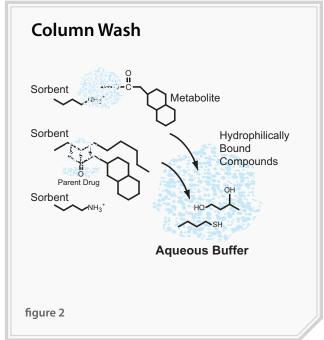
www.unitedchem.com

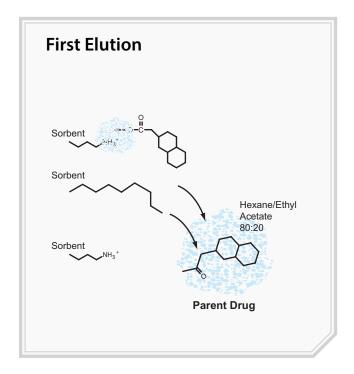
CLEAN-UP COPOLYMERIC EXTRACTION SORBENTS

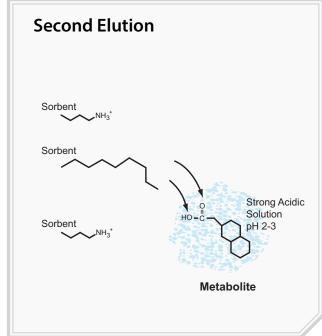
This sorbent is composed of a silica backbone bonded with two types of functional chains. One type is either an ion exchanger or polar chain. The other is a hydrophobic carbon chain. The copolymeric phases manufactured by UCT are produced in a way to allow for equal parts of each functional group to attach to the silica substrate. This copolymerization technique yields reproducible bonded phases and unique copolymeric chemistries which allow the controlled use of mixed mode separation mechanisms. This type of dual chemistry is beneficial when one is looking to extract both a neutral and a charged compound.

Sorbent	Category	Structure	рКа
Benzenesulfonic Acid (BCX2)	Strong Cation	-Si-(CH ₂) ₂ -Ph-SO ₃ H	Always Charged
Propylsulfonic Acid (PCX2)	Strong Cation	-Si-(CH ₂) ₃ SO ₃ H	<1
Carboxylic Acid (CCX2)	Weak Cation	-Si-(CH ₂) ₂ COOH	4.8
Quaternary Amine (QAX2)	Strong Anion	-Si-(CH ₂) ₃ N+(CH ₃) ₃	Always Charged
Aminopropyl (NAX2)	Weak Anion	-Si-(CH ₂) ₃ NH ₃	9.8
Cyanopropyl (CNP2)	Hydrophilic	-Si-(CH ₂) ₃ CN	N/A
Cyclohexyl (CYH2)	Hydrophobic	-Si-(CH ₂)-C ₆ H ₁₂	N/A


Analytes	Washes	Elutions
Cations/Anions Alkanes Alkenes Aromatics	1) Aqueous to disrupt hydrophilic interactions.	Organic, possibly with some aqueous to elute hydrophobic-ally bound analytes.
	2) Methanol to disrupt residual hydrophobic and hydrophilic interferences.	2) Aqueous buffer with a pH that would neutralize ionically bound analytes or an aqueous with high ionic strength or a solvent with a counter ion that would bond to sorbent.


EXTRACTION MECHANISMS OF COPOLYMERIC BONDED PHASES


A sample composed of a theoretical neutral parent drug and its charged (acidic) metabolite is applied at a pH of 6 (figure 1). At this pH, many amine groups are positively charged. Since this sorbent is positively charged, compounds with positively charged cations are repelled. Depending on the pKa of the metabolite, carboxylic acid groups may be negatively charged, allowing the metabolite to bond to the positively charged sorbent. The column also possesses a hydrophobic chain which allows the neutral parent drug to bond to the sorbent.


Water or a weak aqueous buffer (pH 6) washes away hydrophilically bound interferences (figure 2). The column is then dried taking care to ensure the column is free of any residual aqueous phase that would interfere with elution.

After drying, analytes of interest can be eluted using a two step process. During the first elution (figure 3). The hydrophobically bound neutral parent drug is eluted with a solvent of minimal polarity, such as hexane/ethyl acetate (80:20). The second elution (figure 4) employs an acid to neutralize the charge of acidic analytes. The ionic interaction is released, and analytes are eluted in an appropriate solvent mixture.

CLEAN-UP° OCTYL PLUS CYCLOHEXYL SORBENT

Organic Loading = 14.0%Surface Area = $500 \text{ m}^2/\text{g}$ Average Pore Size = 60ÅPore Volume = $0.77 \text{ cm}^3/\text{g}$

	COLUMNS							
Tube Volume (mL)	Sorbent Amount (mg)	Part Number						
6	500	50	CUCYH256					
6	1000	30	CUCYH21M6					
6	100	50	CUCYH21Z					

CLEAN-UP° OCTYL PLUS PROPYLSULFONIC SORBENT

Organic Loading = 14.62%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅExchange Capacity = 0.11 meq/g

	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number				
1	50	100	CUPCX2L1				
1	100	100	CUPCX211				
3	200	50	CUPCX223				
6	500	50	CUPCX256				
10	200	50	CUPCX22Z				

CLEAN-UP° OCTYL PLUS CARBOXYLIC ACID SORBENT

Organic Loading = 11.45%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å Exchange Capacity = 0.110 meq/g

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number			
1	50	100	CUCCX2L1			
1	100	100	CUCCX211			
3	200	50	CUCCX223			
6	500	50	CUCCX256			
75	10000	10	CUCCX210M75			

CLEAN-UP° OCTYL PLUS BENZENESULFONIC ACID SORBENT

Organic Loading = 12.40%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

Average Pore Size = 60Å Exchange Capacity = 0.077 meq/g

COLUMNS					
Tube Volume (mL)	Sorbent Amount (mg)		s per ack	Part Number	
1	50	1	00	CUBCX2L1	
1	100	1	00	CUBCX211	
3	200		50	CUBCX223	
3	500		50	CUBCX253	
6	500		50	CUBCX256	
6	1000	(30	CUBCX2M6	
10	100	į	50	CUBCX21Z	
10	200	į	50	CUBCX22Z	
10	500	į	50	CUBCX25Z	
	1	WELL PL	ATES		
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extende Drip Ti		
48	500	1	NO	WIMBCX25	
48	1000	1	NO	WIMBCX2M	
96	50	1	NO	WSHBCX205	
96	100	1	NO	WSHBCX21	

CLEAN-UP° OCTYL PLUS QUATERNARY AMINE SORBENT

Organic Loading = 13.00%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60ÅExchange Capacity = 0.170 meq/g

COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)		Units per Pack		Part Number	
1	50	10	00		CUQAX2L1	
1	100	10	00		CUQAX211	
3	200	5	0		CUQAX223	
3	500	5	0		CUQAX253	
6	500	5	0		CUQAX256	
6	1000	3	0		CUQAX2M6	
10	200	5	0		CUQAX22Z	
10	500	5	0		CUQAX25Z	
15	2000	2	0	(CUQAX22M15	
	1	WELL PI	_ATE			
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extend Drip T		Part Number	
96	50	1	NO		WSHQAX205	

CLEAN-UP° OCTYL PLUS AMINOPROPYL SORBENT

Organic Loading = 12.10% Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60\AA Exchange Capacity = 0.144 meq/g

	COLUMNS						
Tube Volume (mL)	Sorbent Amount (mg)		Units per Pack		Part Number		
1	50	10	00		CUNAX2L1		
1	100	10	00		CUNAX211		
3	50	5	0		CUNAX2L3		
3	200	5	0		CUNAX223		
3	500	5	0		CUNAX253		
6	1000	3	0		CUNAX2M6		
10	100	5	0		CUNAX21Z		
10	200	5	0		CUNAX22Z		
15	2000	2	0	-	CUNAX22M15		
		WELL P	LATE				
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extend Drip T		Part Number		
96	100	1	NO		WSHNAX21		

CLEAN-UP° OCTADECYL PLUS BENZENESULFONIC ACID SORBENT

Organic Loading = 12.4%Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$ Average Pore Size = 60Å Exchange Capacity = 0.077 meq/g

COLUMNS				
Tube Volume (mL)	Sorbent Amount (mg)	U	nits per Pack	Part Number
1	100		100	CUBCX311
3	50		50	CUBCX3L3
3	100		50	CUBCX313
3	200		50	CUBCX323
3	300		50	CUBCX333
3	500		50	CUBCX353
6	500		50	CUBCX356
6	1000		30	CUBCX3M6
10	100		50	CUBCX31Z
10	200		50	CUBCX32Z
10	300	50		CUBCX33Z
10	500		50	CUBCX35Z
15	2000		20	CUBCX32M15
WELL PLATE				
Number of Wells	Sorbent Amount (mg)	Units per Pack	Extended Drip Tip	Part Number
96	30	1	YES	WSHBCX303-LD

Clean-Up® Covalent Extraction Sorbents

CLEAN-UP® COVALENT EXTRACTION SORBENTS

Covalent sorbents have either epoxy, aldehyde, isocyanate or thiopropyl functional groups that are bound to the silica backbone by a hydrocarbon chain. These groups will react selectively with analyte functional groups causing a formal bond between the stationary support and the analyte.

MECHANISM OF COVALENT BONDING

In the case of the aldehyde sorbent, an analyte with a primary amine performs a nucleophilic attack on the aldehyde functionality in the sorbent. This attack results in a Schiff base, with the amine immobilized on the stationary support. This chemistry can be utilized to bind proteins, such as antibodies, to the support, allowing highly specific extractions.

The thiopropyl functional group scavenges for alkylating agents, alcohols and amines.

Contact us about availability of these additional sorbents: Aldehyde (ALD), Epoxy (EPX), Isocyanate (ICN) and

CLEAN-UP® THIOPROPYL SORBENT

Organic Loading = 6.50% Average Pore Size = 60\AA Surface Area = $500 \text{ m}^2/\text{g}$ Pore Volume = $0.77 \text{ cm}^3/\text{g}$

COLUMNS			
Tube Volume (mL)	Sorbent Amount (mg)	Units per Pack	Part Number
1	100	100	CUTHX111
3	200	200	CUTHX123

Thiopropyl (THX).

CLEAN SCREEN® COPOLYMERIC BONDED PHASES FOR DRUG OF ABUSE TESTING

CSDAU			
Sorbent Amount	Part Number		
10 g	CSDAU00X		
100 g	CSDAU00C		
1 kg	CSDAU00K		
CSTHC			
Sorbent Amount	Part Number		
10 g	CSTHC00X		
100 g	CSTHC00C		
1 kg	CSTHC00K		

CLEAN-UP° COPOLYMERIC BONDED PHASES

CUBCX BENZENESULFONIC ACID + C8			
Sorbent Amount	Part Number		
10 g	CUBCX20X		
100 g	CUBCX20C		
1 kg	CUBCX20K		
CARBOXYLI	C ACID + C8		
Sorbent Amount	Part Number		
10 g	CUCCX20X		
100 g	CUCCX20C		
1 kg	CUCCX20K		
QUATERNAR'	Y AMINE + C8		
Sorbent Amount	Part Number		
10 g	CUQAX20X		
100 g	CUQAX20C		
1 kg	CUQAX20K		
AMINOPROPYL + C8			
Sorbent Amount	Part Number		
10 g	CUNAX20X		
100 g	CUNAX20C		
1 kg	CUNAX20K		

CLEAN-UP° HYDROPHOBIC BONDED PHASES

ENDCAPPED C8, OCTYL			
Sorbent Amount	Part Number		
10 g	CEC0800X		
100 g	CEC0800C		
1 kg	CEC0800K		
UNENDCAPPED C8, OCTYL			
Sorbent Amount	Part Number		
10 g	CUC0800X		
100 g	CUC0800C		
1 kg	CUC0800K		
ENDCAPPED C	18, OCTADECYL		
Sorbent Amount	Part Number		
10 g	CEC1800X		
100 g	CEC1800C		
1 kg	CEC1800K		
UNENDCAPPED C18, OCTADECYL			
Sorbent Amount	Part Number		
10 g	CUC1800X		
100 g	CUC1800C		
1 kg	CUC1800K		

CLEAN-UP° HYDROPHILIC BONDED PHASES

ENDCAPPED CYANOPROPYL			
Sorbent Amount	Part Number		
10 g	CECNP00X		
100 g	CECNP00C		
1 kg	CECNP00K		
UNENDCAPPED CYANOPROPYL			
Sorbent Amount	Part Number		
10 g	CUCNP00X		
100 g	CUCNP00C		
1 kg	CUCNP00K		
UNBONDED SILICA (40-63 μm)			
UNBONDED SIL	.ICA (40-63 μm)		
UNBONDED SIL Sorbent Amount	-ICA (40-63 μm) Part Number		
	•		
Sorbent Amount	Part Number		
Sorbent Amount 10 g	Part Number CUSIL00X		
Sorbent Amount 10 g 100 g 1 kg	Part Number CUSIL00X CUSIL00C		
Sorbent Amount 10 g 100 g 1 kg	Part Number CUSIL00X CUSIL00C CUSIL00K		
Sorbent Amount 10 g 100 g 1 kg PHARMA-SIL	Part Number CUSIL00X CUSIL00C CUSIL00K -* (40-63 µm)		
Sorbent Amount 10 g 100 g 1 kg PHARMA-SIL Sorbent Amount	Part Number CUSIL00X CUSIL00C CUSIL00K -° (40-63 μm) Part Number		

DIOL				
Sorbent Amount	Part Number			
10 g	CUDOL00X			
100 g	CUDOL00C			
1 kg	CUDOL00K			
FLORISIL® Registered Trademark of US Silica				
Sorbent Amount	Part Number			
10 g	CUFLS00X			
100 g	CUFLS00C			
1 kg	CUFLS00K			
ACIDIC A	ALUMINA			
Sorbent Amount	Part Number			
10 g	CUALA00X			
100 g	CUALA00C			
1 kg	CUALA00K			
BASIC A	BASIC ALUMINA			
Sorbent Amount	Part Number			
10 g	CUALB00X			
100 g	CUALB00C			
1 kg	CUALB00K			
NEUTRAL ALUMINA				
Sorbent Amount	Part Number			
10 g	CUALN00X			
100 g	CUALN00C			
1 kg	CUALN00K			

www.unitedchem.com

CLEAN-UP® ANION EXCHANGE

PRIMARY/SECONDARY AMINE			
Sorbent Amount	Part Number		
10 g	CUPSA00X		
100 g	CUPSA00C		
1 kg	CUPSA00K		
AMINO	PROPYL		
Sorbent Amount	Part Number		
10 g	CUNAX00X		
100 g	CUNAX00C		
1 kg	CUNAX00K		
DIETHY	LAMINO		
Sorbent Amount	Part Number		
10 g	CUDAX00X		
100 g	CUDAX00C		
1 kg	CUDAX00K		
QUATERNA	ARY AMINE		
CHLORIDE C	OUNTERION		
Sorbent Amount	Part Number		
10 g	CUQAX00X		
100 g	CUQAX00C		
1 kg	CUQAX00K		
QUATERNA	ARY AMINE		
ACETATE CO	DUNTERION		
Sorbent Amount	Part Number		
10 g	CAQAX00X		
100 g	CAQAX00C		
1 kg	CAQAX00K		
QUATERNA	ARY AMINE		
HYDROXIDE	COUNTERION		
Sorbent Amount	Part Number		
10 g	CHQAX00X		
100 g	CHQAX00C		
1 kg	CHQAX00K		
POLYIMINE			
Sorbent Amount	Part Number		
10 g	CUPAX00X		
100 g	CUPAX00C		
1 kg	CUPAX00K		

CLEAN-UP® CATION EXCHANGE

CARBOXYLIC ACID			
Sorbent Amount	Part Number		
10 g	CUCCX00X		
100 g	CUCCX00C		
1 kg	CUCCX00K		
PROPYLSUL	FONIC ACID		
Sorbent Amount	Part Number		
10 g	CUPCX00X		
100 g	CUPCX00C		
1 kg	CUPCX00K		
BENZENESU	LFONIC ACID		
Sorbent Amount	Part Number		
10 g	CUBCX00X		
100 g	CUBCX00C		
1 kg	CUBCX00K		
BENZENESULFONIC ACID			
HIGH	LOAD		
Sorbent Amount	Part Number		
10 g	CUBCXHL00X		
100 g	CUBCXHL00C		
1 kg	CUBCXHL00K		
TRIACETIC ACID			
Sorbent Amount	Part Number		
10 g	CUTAX00X		
100 g	CUTAX00C		
1 kg	CUTAX00K		

STYRE SCREEN® POLYMERIC RESIN

BENZENESULFONIC ACID + C18			
Sorbent Amount	Part Number		
10 g	SSDBX00X		
100 g	SSDBX00C		
POLYSTYRENE DIVINYLBENZENE			
Sorbent Amount	Part Number		
10 g	SSDVB00X		
100 g	SSDVB00C		
REVERSE PHAS	SE OCTADECYL		
REVERSE PHAS	SE OCTADECYL Part Number		
Sorbent Amount	Part Number		
Sorbent Amount 10 g 100 g	Part Number SSC1800X		
Sorbent Amount 10 g 100 g	Part Number SSC1800X SSC1800C		
Sorbent Amount 10 g 100 g BENZENESU	Part Number SSC1800X SSC1800C LFONIC ACID		

QUATERNARY AMINE			
Sorbent Amount	Part Number		
10 g	SSQAX00X		
100 g	SSQAX00C		
FOR THC AND TH	IC METABOLITES		
FOR THC AND TH	IC METABOLITES Part Number		

Positive Pressure Manifold 2.0

Rugged Performance / Streamlined Design

UCT's all new 48 position positive pressure manifold features the same rugged performance end-users have grown to expect, but now boasts a streamlined, compact footprint.

- Easy manifold set-up
- Convenient gas supply options / Waste removal
- User friendly: Easy to read/adjust pressure regulators
- Modern design / Small footprint
- Configurable collection racks (Column and Sample) allowing for a variety of SPE column types to be used (1mL, 3mL, 6mL, 10mL or 15mL).
- Single switch adjustment process
- Uniform pressure from port to port regardless of batch size in sample tray ensuring for an overall efficient extraction.
- All-in-one frit plate with removable frits and o-rings in the event an isolated port becomes obstructed.

Positive Pressure Manifold 2.0			
Part Number	Description	Unit	
VMFPPM13V2	Positive Pressure Manifold 2.0 System w/ 13 x 100 Collection Rack	1	
VMFPPM16V2	Positive Pressure Manifold 2.0 System w/ 16 x 100 Collection Rack	1	
VMFPPMIK	Installation Kit (tubing, air filter, fittings, gaskets)	KIT	

^{*}Available as a separate part number to purchase with complete units.

Positive Pressure Manifold 2.0

POSITIVE PRESSURE MANIFOLD 2.0 ACCESSORIES

Description	Units	Part Number
Adapter Extraction Plates to accommodate 1mL columns.	1	VMFPPMV2RKA1
Adapter Extraction Plates to accommodate 3mL columns.	1	VMFPPMV2RKA3
Adapter Extraction Plates to accommodate 6mL columns.	1	VMFPPMV2RKA6
Installation Kit (25 ft 1/4" O.D. tubing, in line air filter, 2-1/4" compression fittings)	1	VMFPPMIK
Waste Container (per-drilled with Stopcock)	1	VMFPPMV2WBND
Collection Rack		\/\AFDD\\\\\2CD\\C12
13 x 100mm elution rack 16 x 100mm elution rack	1	VMFPPMV2CRKG13 VMFPPMV2CRKG16
Replacement in line air filter	1	VMFPPMRAF
Tuned frits and O-rings	12 set	VMFPPMV21034-S12
with remove/replace tool	48 set	VMFPPMV21034-S48
Brown PPM Gasket – Replacement column sealing gasket	1	VMFPPMV2GSKBL
Orange PPM Gasket – Replacement column sealing gasket	1	VMFPPMV2GSKOR
Frit Plate	1	VMFPPMCBPLT
PPM Waste Tray Draining Kit: – 10 ft tube and stopcock	1	VMFPPWTDK

Adapter Extraction Plates 1mL columns

Adapter Extraction Plates 3mL columns

Adapter Extraction Plates 6mL columns

Istallation Kit

Waste Container

Elution Rack

Air Filter

Tuned Frits and O-rings

Brown PPM Gasket

Orange PPM Gasket

Frit Plate

PPM Waste Tray **Draining Kit**

Positive Pressure Manifold

A complete Positive Pressure Manifold (PPM) System consists of the PPM base, a rack for holding either 10 mL or 15 mL SPE columns, a test tube holder collection rack and a pre-drilled waste container. The PPM can be ordered with either a 13 x 100 mm collection rack or a 16 x 100 mm collection rack.

All 48 positions of the PPM System are individually regulated to provide even pressure to each column. There are 4 rows of 12 positions. Each row has a switch to control flow. The PPM System can accommodate 1 – 48 columns. Acceptable column sizes include: 1 mL, 3 mL, 6 mL, 10 mL or 15 mL. Dual pressure regulators allow different pressure settings for the extraction step and the column drying step. Each PPM comes with a waste reservoir that can be emptied between waste steps if desired. A single switch raises and lowers the sample racks creating an airtight seal. The PPM requires a supplied pressure of 75 psi with either nitrogen or compressed air. The compressed air must be filtered to 10 µm.

Description	Part Number
Complete Positive Pressure Manifold System with collection rack for 13 x 100 mm sized test tubes, 10mL/15mL SPE Tube Rack, and Pre-Drilled Waste Container	VMFPPM13
Complete Positive Pressure Manifold System with collection rack for 16 x 100 mm sized test tubes, 10mL/15mL SPE Tube Rack, and Pre-Drilled Waste Container	VMFPPM16

^{*}For use of complete Positive Pressure Manifold System, PPM installation kit must also be purchased.

Positive Pressure Manifold

POSITIVE PRESSURE MANIFOLD ACCESSORIES

Description	Units	Part Number
PPM Installation Kit – 25' x 1/4" O.D. tubing, In-line air filter with bracket, 2 quick connect fittings, 2 screws, and requlator & gauge	1	VMFPPMIK
Adapter Extraction Plate for 1 mL Columns – Conversion plate designed to hold 1 mL SPE Columns	1	VMFPPMRKA1
Adapter Extraction Plate for 6 mL Columns - Conversion plate designed to hold 6 mL SPE Columns	1	VMFPPMRKA6
Collection Rack for 13 x 100 mm Test Tubes – Rack designed to hold test tubes that are 13 mm in diameter and 100 mm in length	1	VMFPPMCRKG13
Waste Container – Wastebin with draining kit (10 ft tubing + stopcock)	1	VMFPPMWBND
Frit (Restrictor) Plate – Fritted plate that controls air flow, note there is one plate per row	1	VMFPPMFRPLT
Brown PPM Gasket – Seal used in contact of PPM to the extraction columns	1	VMFPPMGSKBL
Orange PPM Gasket – Seal used for frit plate	1	VMFPPMGSKOR
Hood to Tubing Adaptor – Designed to accomodate fume hood air source connection with provided PPM tubing.	1	VMFPPMHADP

PPM Installation Kit

Collection Rack for 16 x 100 mm Test Tubes

10 & 15 mL SPE

Waste Container

Adapter Extraction Plate for 1 mL Columns Plate

Frit (Restrictor)

Adapter Extraction Plate for 3 mL Colimns

Brown PPM Gasket

Adapter Extraction Plate for 6 mL Colimns

Orange PPM Gasket

Collection Rack for 13 x 100 mm Test Tubes

Hood to Tubing Adaptor

96 Wellplate Positive Pressure Manifold

- Small instrument footprint (9"x 9"x 14") does not take up valuable bench space
- Accommodates a wide range of commercially available 96 well plates
- Works with both 96 and 48 well plates
- Restrictor plate allows even gas flow across all 96 wells even when some positions are empty
- Two gas flow regulators on the front panel one high flow regulator used for sorbent bed drying and one low flow regulator used for sample loading, washing, and eluting
- · Positive pressure is well suited for viscous sample matrices
- Instrument gas regulator on the back can be set and locked into place
- Gas Supply: N_2 or compressed air regulated to 40 45 psi and filtered to 10 μ m
- All pneumatic only a gas supply is needed, there are no electrical connections

96 WELL PLATE PPM			
Part Number	Description	Unit	
VMF96PPM	96 Well Plate Positive Pressure Manifold	1	
Accessories			
Part Number	Description	Unit	
VMFPPMIK	Installation kit: 25' x 1/4" O.D. tubing, In-line air filter with bracket, 2 quick connect fittings, and 2 screws	Kit	
VMF96PPMGSK	Replacement Brown Gasket – 96 well plate manifold	1	
WSH96WT	96 well waste collection plate	1	
WSH96CP	96 well sample collection plate	1	

Universal Vacuum Manifold

UNIVERSAL VACUUM MANIFOLD COMPLETE SYSTEM

Description	Part Number
System accommodates 24 individual columns, 48 individual columns, and well plate configurations. System includes all collection plates, all extraction plates, manifold, vacuum gauge, vacuum tubing, vacuum relief valve, vacuum flask, hose barb adaptor, and waste base.	VMFUVWP

INDIVIDUAL SYSTEMS			
	Description	Part Number	
the train of	24 Column Manifold System – System includes a 24 GC vial collection plate, a 24 column extraction plate, manifold, vacuum gauge, vacuum tubing, vacuum relief valve, vacuum flask, hose barb adaptor, and waste base.	VMF24WP	
A STATE OF THE STA	48 Column Manifold System – System includes a 48 GC vial collection plate, a 48 column extraction plate, manifold, vacuum gauge, vacuum tubing, vacuum relief valve, vacuum flask, hose barb adaptor, and waste base.	VMF48WP	
	Well Plate Manifold System – System includes a manifold, vacuum gauge, vacuum tubing, vacuum relief valve, vacuum flask, hose barb adaptor, and waste base. This system can accommodate 24, 48, and 96 well plates and their respective collection plates.	VMF96WP	

UNIVERSAL VACUUM MANIFOLD ACCESSORIES

24 Column
Extraction Plate

EPDM Gasket

24 Vial Collection Plate

Spacer 1/2"

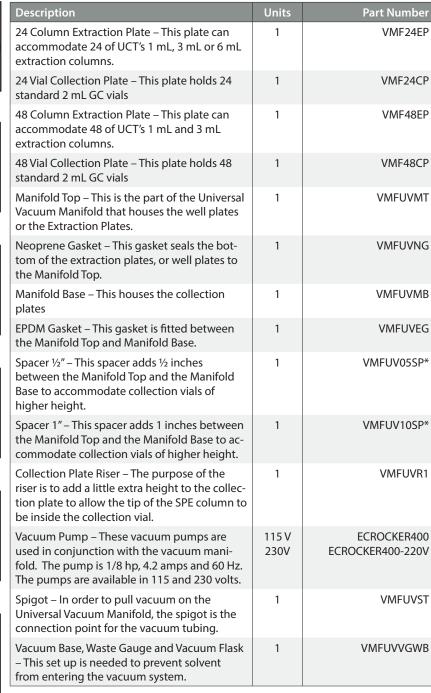
48 Column Extraction Plate

Spacer 1"

48 Vial Collection Plate

Collection Plate Riser

Manifold Top


Vacuum Pump

Neoprene Gasket

Spigot

*Each additional spacer ordered requires its own corresponding gasket (VMFUVEG) for most effective usage.

Manifold Base

Vacuum Base, Waste Gauge and Vacuum Flask

Glass Block Vacuum Manifold

A complete Vacuum Manifold System consists of a glass block, Corian® manifold lid, a cover gasket, vacuum gauge and assembly, PTFE tips, an adjustable collection rack, bulkhead luer fittings, plugs and a glass block safety tray. The Vacuum Manifold System is available in either 16 or 24 positions.

These manifold systems are durable and chemically resistant units designed to provide years of trouble free extractions.

Description	Part Number
Complete 16 Position Vacuum Manifold System	VMF016GL
Complete 24 Position Vacuum Manifold System	VMF024GL

Glass Block Vacuum Manifold

Description	Units	Part Number
Manifold Lid (16 position) – A rigid Corian [®] lid which resists warping with extended use. Lids come with caps, bulkhead fittings and gasket.	1	VMF06120
Manifold Lid (24 position) – A rigid Corian [®] lid which resists warping with extended use. Lids come with caps, bulkhead fittings and gasket.	1	VMF04120
Manifold Lid Legs – The lid legs can be used to set the manifold lid on a surface while loading columns, changing collection tubes or removing waste.	4	VMF02120-1
Gasket – A foam gasket that fits both the 16 and 24 position lids.	2	VMF04121
Collection Rack (16 position) – A polypropylene rack that is highly resistant to chemical degradation and abuse. This rack allows the use of 13 and 16 mm disposable test tubes.	1	VMF06125
Collection Rack (24 position) – A polypropylene rack that is highly resistant to chemical degradation and abuse. This rack allows the use of 13 and 16 mm disposable test tubes.	1	VMF04125
Collection Rack (12 position) – A polypropylene rack that is highly resistant to chemical degradation and abuse. This rack is designed for the use of 27 mm (VOA vials) and smaller disposable collection vials.	1	VMF02125
Collection Rack Posts – These posts can be ordered as replacements parts for the posts in all collection racks.	3	VMF02127
${\bf Collection\ Rack\ Retaining\ Clips-These\ clips\ are\ replacement\ parts\ for\ the\ clips\ included\ in\ all\ collection\ racks.}$	12	VMF02129
Vacuum Gauge and Bleed Valve – This system is used in monitoring and adjusting vacuum.	1	VMF02122
Bulkhead Luer Fittings – These fittings screw into the lid allowing the sample to transfer from the column into the PTFE Luer tip to the test tube.	12	VMF21BFN
Luer Plugs – These plugs fit into the bulkhead fittings in order to seal unused bulkhead fittings. These can also be used to break vacuum to the manifold.	12	VMF21PLN
1 mL 3 mL	50	CR0001P CR0004P
Flange Caps – Used with the Luer Caps, 6 & 10 mL	50	CR0008P
Flange Caps plug the top of SPE cartridges. 15 mL 25 mL	50 50	CR0015P CR0025P
20L Waste Trap	1	ECUCTTRAP20
20L Waste Trap Adaptor – 3/8" x 1/4" PVDF ADPT for fitting to glass block manifold.	1	ECUCTTRAP20-ADPT

Flange Caps

Collection Rack (16 Position)

Collection Rack (12 Position)

20L Waste Trap

Manifold Lid (24 Position)

Vacuum Gauge and Bleed Valve

Glass Block

Manifold Lid (16 Position)

Collection Rack (24 Position)

Collection Rack Posts

Collection Rack Retaining Clips

Legs

Bulkhead Luer Fittings

Glass Block Vacuum Manifold

Description	Units	Part Number
Luer Caps – Luer caps are used in tandem with flange caps to seal the SPE cartridge.	50	LUER50
PTFE Luer Tips – These tips allow direct transfer of sample to the test tube.	12	VMF020TT
Clean-Thru* Tips - A disposable tip that eliminates potential sample carryover from the vacuum manifold lid. Tips connect to the luer tip on the SPE column and are passed through the manifold directly into the waste or collection vessel. The disposable nature eliminates repeated use and therefore any concern of sample carryover.	50	CLTTP050
Manifold Safety Tray – A safety tray comes as part of the complete manifold system, so as to prevent the glass block form cracking or chipping.	1	VMF02072
Adapters – Adapter cap has a tapered fit for 1, 3, 6, 10 and 15 mL size reservoirs with a standard luer fitting on top. These adapters are ideal when a sample volume	15	AD0000AS
exceeds the capacity of the SPE column or when sequential extractions are desired.	100	AD00000C
Kynar" Stopcocks – Made from Kynar", a PFDV polymer that is solvent resistant, these reusable luer fitted valves are used	16	VMF02116
in conjunction with a vacuum manifold. The purpose is to provide individual flow control to each SPE cartridge.	24	VMF02024
PTFE Stopcocks – Made from PTFE, these stopcocks allow an increased level of solvent resistivity.	6	ECVMF06
Sample Transfer Tubes – These tubes are a hands-free system designed to transfer sample from a larger container	6 pack	VMFSTFR06
into the SPE cartridge via vacuum.	12 pack	VMFSTFR12
Vacuum Pump – These vacuum pumps are used in conjunction with the vacuum manifold. The pump is 1/8	115 V	ECROCKER400
hp, 4.2 amps and 60 Hz. The pumps are available in 115 and 230 volts.	230 V	ECROCKER400-220V

Luer Caps

Vacuum Pump

PTFE Luer Tips

Adapters

Clean-Thru Tips

Kynar[®] Stopcocks

Manifold Safety Tray Sample Transfer Tubes

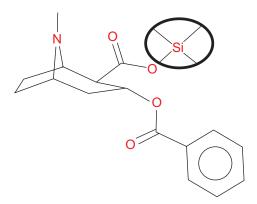
SPeVAP® Multi-Function Solvant Evaporator

SPeVAP® 32/48 position solvent evaporator is a welcome addition to UCT's long-standing manifold arsenal. Featuring the same reliability and performance associated with our pneumatic extractors, it is designed to be more efficient and take up less space than a traditional evaporator.

- Sleek design / Touch screen functionality
- Corrosive resistant
- Directable exhaust output
- 10 Pre-programmable dry down methods
- On-spot PTFE nozzle adjustment and replacement to minimize cross-contamination
- Color-coded view window synchronized with your evaporation Step
- · Autosampler vial evaporation capabilities
- Exhaust port / fume hood space not required
- Extended programming provides for gradual increase of flow gradients in tube as evaporation occurs, ensuring targeted completion.

Positive Pressure Manifold 2.0			
Part Number	Description	Unit	
VMFSPEVAP-32	SPeVAP® 32 Position Multi-Function Solvent Evaporator	1	
VMFSPEVAP-48	SPeVAP® 48 Position Multi-Function Solvent Evaporator	1	
VMFSPEVAP-32-220V	SPeVAP® 32 Position Multi-Function Solvent Evaporator – 220V	1	
VMFSPEVAP-48-220V	SPeVAP® 48 Position Multi-Function Solvent Evaporator – 220V	1	

SPeVAP® Multi-Function Solvant Evaporator


Trays and Vial Compatibility

Part Number	Description	Position	Allowed Length	Vial Diameter Range	Compatible Vials
VMFSPEVAPCR 3252	27-29mm VOA Vial	32	Up to 150mm	27-29mm	40mL VOA 60mL VOA
VMFSPEVAPCR 3253	12-14mm Vial	32	Up to 150mm	12-14mm	13mm x 100-125mm
VMFSPEVAPCR 3256	16-18mm Vial	32	Up to 150mm	16-18mm	16mm x 100-125mm
VMFSPEVAPCR 3250	10.42-12.92mm AS Vial	32	Up to 150mm	15-18mm	1.5-2mL Autosampler
VMFSPEVAPCR 4849	12-14mm Vial	48	Up to 150mm	12-14mm	13mm x 100-125mm
VMFSPEVAPCR 4850	16-18mm Vial	48	Up to 150mm	16-18mm	16mm x 100-125mm
VMFSPEVAPCR 4851	10.42-12.92mm AS Vial	48	Up to 150mm	15-18mm	1.5-2mL Autosampler

Purpose of Derivatization:

Derivatization is performed for two significant reasons. The first of which is to reduce the polarity and enhance the volatility of high molecular weight polar drugs, making them more suitable for analysis via GC-MS (Figure 1).

Figure 1. Trimethylsilyl derivative of benzoylecgonine. The underivatized compound has a carboxyl group and is too polar to pass through a GC column.

The second reason is to increase the molecular weight of very volatile drugs. This derivatization results in a more complex mass spectrum that improves the selectivity for that particular drug. When derivatizing drugs for GC/MS analysis, the spectrum of the resulting compounds should contain at least three ions that are unique to that analyte and not a result of the matrix.

Choosing a Derivatizing Agent

Silylation Reagents

Silylation is the most popular derivatization procedure for GC sample analysis. Of the silylation reagents, the most common is BSTFA (N,O-bis(trimethylsilyl)trifluoroacetamide). Silylation reagents are easy to use and readily form derivatives. In silylation, an active hydrogen found in molecules such as acids, alcohols, thiols, amines, amides, enolizable ketones and aldehydes is replaced by trimethylsilyl (TMS) or t-butyldimethylsilyl (t-BDMS). Compared to their parent compounds, silyl derivatives are more volatile, less polar, and more thermally stable. As a result, GC separation is improved and detection is enhanced. It is important to evaporate the analytes to complete dryness prior to derivatization. The higher boiling points of silylation reagents allow for greater room temperature stability, as long as the reagent is maintained in dry conditions.

Acylation Reagents

The next preferred derivatizing reagent is acylation reagents. These are typically available as acid anhydrides, acyl derivatives, or acyl halides. Common varieties of acylation reagents are TFAA (trifluoroacetic acid anhydride), PFAA (pentafluoropropionic acid anhydride) and HFAA (heptafluorobutyric acid anhydride). These reagents react with alcohols, phenols and amines to form fluoroacyl esters and amides. Acylation reagents offer similar advantages to silylation reagents. They create less polar, more volatile derivatives, however opposed to silylating reagents, acylating reagents target highly polar, multi-functional compounds, such as carbohydrates and amino acids. Acylating reagents also introduce electron capturing groups to the derivatized sample; enhancing analytical detection. Acyl halides and acyl derivatives are highly reactive. Typically they are used where steric hindrance may be an issue. Due to the corrosive nature of these reagents, any excess material or byproducts must be removed by evaporation prior to analysis. The derivatized analytes are then dissolved in another solvent and injected onto the GC-MS to prevent any column degradation.

Alkylation Reagents

Another group of derivatizing reagents are alkylation reagents, which replace active hydrogens with an alkyl group. These reagents are used to modify compounds having acidic hydrogens, such as carboxylic acids and phenols. Alkylation reagents can be used alone to form esters, ethers, and amides or they can be used in combination with acylation or silylation reagents. Esterification is the most popular method of alkylation. Alkyl esters are stable and form quickly and quantitatively. Alteration of the length of the substituted alkyl group can be used to alter the retention time of derivatives.

Derivatizing reagents are usually stored at room temperature or in a dessicator. Refrigeration should be avoided due to humid conditions shortening the life and effectiveness of the product. If refrigeration of reagents is desired, the reagent must come to room temperature in a dessicator prior to use. It is recommended to utilize reagents within six months of their ship date.

Volatility of target compounds is an important consideration for gas chromatographic analysis. Polar functional groups such as amines, hydroxyls and carboxylic acids frequently hinder chromatographic resolution due to low volatility and/or hydrogen bonding effects with reactive sites on glassware, injector ports and analytical columns.

SELECTRA-SIL* Reagents are packaged by weight, but are liquid in form. UCT's derivatizing reagents are synthesized and purified by UCT to exacting standards of purity and consistency. The reagents are packaged under nitrogen, sealed with a PTFE stopper and crimp topped to maintain an inert atmosphere. If stability of the reagents are a concern, UCT offers reagents packaged in sealed glass ampules, packaged under an inert atmosphere.

SILYLATION REAGENTS

Silyl derivatives are the most widely used chemical derivatization reagents. Silyl derivatization requires an "active" hydrogen as seen in acids, alcohols, thiols, amines, amide, enolizable ketones and aldehydes to be replaced by a trimethylsilyl group or tertiary butyl dimethylsilyl. Trimethylsilyl derivatives tend to be moisture sensitive, so a derivative with tertiary butyl dimethylsilyl may be preferred.

BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide – CAS# 25561-30-2				
Derivatizes me	Derivatizes most amines, alcohols, carboxylic acids and hydroxyls			
Packaging	Units	Part Number		
1 g sealed ampule	10 ampules / pack	SBSTFA-0-1-AMP		
1 g vial	10 vials / pack	SBSTFA-0-1		
10 g vial	1 vial	SBSTFA-0-10		
25 g vial	1 vial	SBSTFA-0-25		
100 g bottle	1 bottle	SBSTFA-0-100		

BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide with 1% TMCS trimethylchlorosilane Derivatizes most amines, alcohols, carboxylic acids and hydroxyls, TMCS serves as a catalyst to improve reaction yield for sterically hindered hydroxyls, some amines and amides		
Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SBSTFA-1-1-AMP
1 g vial	10 vials / pack	SBSTFA-1-1
10 g vial	1 vial	SBSTFA-1-10
25 g vial	1 vial	SBSTFA-1-25
100 g bottle	1 bottle	SBSTFA-1-100

BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide with 10% TMCS trimethylchlorosilane

Derivatizes most amines, alcohols, carboxylic acids and hydroxyls, TMCS serves as a catalyst to improve reaction yield for sterically hindered hydroxyls, some amines and amides

Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SBSTFA-10-1-AMP
1 g vial	10 vials / pack	SBSTFA-10-1
10 g vial	1 vial	SBSTFA-10-10
25 g vial	1 vial	SBSTFA-10-25
100 g bottle	1 bottle	SBSTFA-10-100

MSTFA N-Methyl-N-trimethylsilyltrifluoroacetamide – CAS# 24589-78-4

Derivatizes most amines, alcohols, carboxylic acids and hydroxyls – most volatile of the trimethylsilyl derivatives, but with donor strength equal to BSTFA

	•	
Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SMSTFA-0-1-AMP
1 g vial	10 vials / pack	SMSTFA-0-1
10 g vial	1 vial	SMSTFA-0-10
25 g vial	1 vial	SMSTFA-0-25
100 g bottle	1 bottle	SMSTFA-0-100

MSTFA N-Methyl-N-trimethylsilyltrifluoroacetamide with 1% Trimethylchlorosilane

Derivatizes most amines, alcohols, carboxylic acids and hydroxyls – most volatile of the trimethylsilyl derivatives, but with donor strength equal to BSTFA. TMCS serves as a catalyst to improve reaction yield for sterically hindered hydroxyls, some amines and amides

Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SMSTFA-1-1-AMP
1 g vial	10 vials / pack	SMSTFA-1-1
10 g vial	1 vial	SMSTFA-1-10
25 g vial	1 vial	SMSTFA-1-25
100 g bottle	1 bottle	SMSTFA-1-100

MTBSTFA N-Methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide – CAS# 77377-52-7

Derivatizes hydroxyl, carboxyl, thiol and amines (primary and secondary).

Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SMTBSTFA-0-1-AMP
1 g vial	10 vials / pack	SMTBSTFA-0-1
10 g vial	1 vial	SMTBSTFA-0-10
25 g vial	1 vial	SMTBSTFA-0-25
100 g bottle	1 bottle	SMTBSTFA-0-100

MTBSTFA N-Methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide w/ 1% Tert-butyldimethylchlorosilane

Derivatizes hydroxyl, carboxyl, thiol and amines (primary and secondary). Addition of tert-butyldimethylchlorosilane increases the silylation ability to derivatize sterically hindered alcohols and amines. The TBDMCS derivatives are more stable than the related TMS analogs

Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SMTBSTFA-1-1-AMP
1 g vial	10 vials / pack	SMTBSTFA-1-1
10 g vial	1 vial	SMTBSTFA-1-10
25 g vial	1 vial	SMTBSTFA-1-25
100 g bottle	1 bottle	SMTBSTFA-1-100

MTBSTFA N-Methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide w/ 10% Tert-butyldimethylchlorosilane

Derivatizes hydroxyl, carboxyl, thiol and amines (primary and secondary). Addition of tert-butyldimethylchlorosilane increases the silylation ability to derivatize sterically hindered alcohols and amines. The TBDMCS derivatives are more stable than the related TMS analogs.

Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SMTBSTFA-10-1-AMP
1 g vial	10 vials / pack	SMTBSTFA-10-1
10 g vial	1 vial	SMTBSTFA-10-10
25 g vial	1 vial	SMTBSTFA-10-25
100 g bottle	1 bottle	SMTBSTFA-10-100

TMCS Trimethylchlorosilane – CAS# 75-77-4 Catalyst used to increase the reactivity of other silylation reagents. Is also used to form trimethyl esters of organic acids.		
Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	STMCS-0-1-AMP
1 g vial	10 vials / pack	STMCS-0-1
10 g vial	1 vial	STMCS-0-10
25 g vial	1 vial	STMCS-0-25
100 g bottle	1 bottle	STMCS-0-100

ACYLATION REAGENTS

Acylation is the conversion of compounds with active hydrogens, such as thiols, hydroxyls, and amines, into thioesters, esters and amides respectively by forming a carboxylic acid derivative. The primary usage of acylation chemistry is to form compounds that chromatograph better than the parent molecule.

MBTFA N-Methyl-bis-trifluoroacetamide – CAS# 685-27-8

MBTFA reacts with primary and secondary amines, hydroxyl and thiol groups under mild, non-acidic conditions. It can also be used to selectively acelyate amines in the presence of hydroxyl and carboxyl groups that have been protected by silylation

Packaging	Units	Part Number
1 g vial	10 vials / pack	SMBTFA-0-1
10 g vial	1 vial	SMBTFA-0-10
25 g vial	1 vial	SMBTFA-0-25
100 g bottle	1 bottle	SMBTFA-0-100

TFAA Trifluoroacetic acid anhydride – CAS# 407-25-0

TFAA reacts readily with alcohols, phenols and amines producing stable volatile derivatives for TCD, FID, ECD and other detectors. Most reactive of all the perfluoroacid anhydrides and frequently used to identify methamphetamine

Packaging	Units	Part Number
1 g vial	10 vials / pack	STFAA-0-1
10 g vial	1 vial	STFAA-0-10
25 g vial	1 vial	STFAA-0-25
100 g bottle	1 bottle	STFAA-0-100

PFAA Pentafluoropropionic acid anhydride – CAS# 356-42-3

PFAA is commonly used in the determination of benzoylecgonine and opiates. Acidic by-products of this reaction must be removed before the derivative can be injected onto the GC

Packaging	Units	Part Number
1 g vial	10 vials / pack	SPFAA-0-1
10 g vial	1 vial	SPFAA-0-10
25 g vial	1 vial	SPFAA-0-25
100 g bottle	1 bottle	SPFAA-0-100

HFAA Heptafluorobutyric acid anhydride - CAS#336-59-4

HFAA is commonly used in the determination of benzoylecgonine and opiates. Acidic by-products of this reaction must be removed before the derivative can be injected onto the GC

Packaging	Units	Part Number
1 g vial	10 vials / pack	SHFAA-0-1
10 g vial	1 vial	SHFAA-0-10
25 g vial	1 vial	SHFAA-0-25
100 g bottle	1 bottle	SHFAA-0-100

TFAI N-Trifluoroacetylimidazole – CAS#68739-25-3

TFAI offers considerable advantages over the anhydrides for the preparation of perfluoroacyl derivatives; the reactions are quantitative and produce relatively inert imidazole by-products

Packaging	Units	Part Number
1 g vial	10 vials / pack	STFAI-0-1
10 g vial	1 vial	STFAI-0-10
25 g vial	1 vial	STFAI-0-25
100 g bottle	1 bottle	STFAI-0-100

PIA Propionic Anhydride – CAS#123-62-6

PIA is used in the derivatization of opiates if there is more morphine in the sample than 6-MAM.

This derivatization allows the 6-MAM peak to elute before morphine

Packaging	Units	Part Number
1 g sealed ampule	10 ampules / pack	SPIA-0-1-AMP
1 g vial	10 vials / pack	SPIA-0-1
10 g vial	1 vial	SPIA-0-10
25 g vial	1 vial	SPIA-0-25

	Acetic Anhydride – CAS#108-24-7		
Packaging	Units	Part Number	
1 g sealed ampule	10 ampules / pack	SACETICANH-0-1-AMP	

ALKYLATION REAGENTS

ТМРАН	0.2M Trimethylanilium hydroxide in methanol		
Packaging	Units	Part Number	
1 g vial	10 vials / pack	STMPAH-0-1	
10 g vial	1 vial	STMPAH-0-10	
25 g vial	1 vial	STMPAH-0-25	
100 g	2 x 50g vial	STMPAH-0-100	

SELECTRA-SIL® Derivatizing Reagents

PFPOH Pentafluoropropanol – CAS# 771-61-9			
Packaging	Units	Part Number	
1 g vial	10 vials / pack	SPFPOH-0-1	
10 g vial	1 vial	SPFPOH-0-10	
25 g vial	1 vial	SPFPOH-0-25	
100 g vial	1 vial	SPFPOH-0-100	

4 CB 4-Carbethoxyhexafluorobutyryl Chloride – CAS# 18381-53-8			
Packaging	Units	Part Number	
1 g vial	10 vials / pack	S4CB-0-1	
10 g vial	1 vial	S4CB-0-10	
25 g vial	1 vial	S4CB-0-25	

HFIP	Hexafluoro-2-propanol – CAS# 920-66-1	
Packaging	Units	Part Number
1 g vial	10 vials / pack	SHFIP-0-1
10 g vial	1 vial	SHFIP-0-10
25 g vial	1 vial	SHFIP-0-25
100 g vial	1 vial	SHFIP-0-100

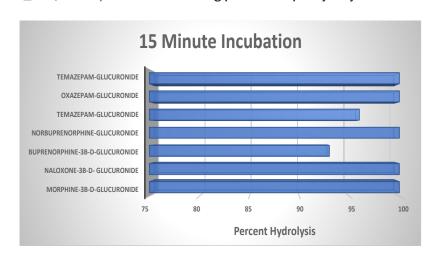
DERIVATIZING REAGENT SOLVENTS

ACN Acetonitrile – CAS# 75-05-8		
Packaging	Units	Part Number
50 g vial	1 vial	SACN-0-50

	PYR Pyridine – CAS# 110-86-1	
Packaging	Units	Part Number
25 g vial	1 vial	SPYR-0-25
50 g vial	1 vial	SPYR-0-50
100 g vial	1 vial	SPYR-0-100

Abalonase™ Ultra

Purified Enzymatic Formula at Maximum Activity Thresholds


Avoid overloading your sample with costly enzyme formulations by utilizing UCT's all-new, highly concentrated Abalonase[™] Ultra. With activity levels at an upwards of 150,000 fishman units/mL, this 3X's concentrated β -glucuronidase can be used for real time and room temperature hydrolysis for high-throughput drug screening applications. Within minutes of introducing it to your samples, the Abalonase[™] Ultra formula can deconjugate the toughest metabolites to hydrolyze including benzodiazepines, opioids, cannabinoids, and synthetic cannabinoids.

Abalonase™ Ultra

Abalonase™ Ul t ra				
Part Number	Volume	Activity Level		
UASBETA-GLUC-10	10 mL	≥ 150,000 units		
UASBETA-GLUC-25	25 mL	≥ 150,000 units		
UASBETA-GLUC-50	50 mL	≥ 150,000 units		
UASBETA-GLUC-100	100 mL	≥ 150,000 units		

Analyte	Recovery >89% Hydrolysis	Time (Minutes)
Morphine 3	>	15
Morphine 6	✓	30
Codeine 6	✓	30
Naloxone	✓	0
Buprenorphine	✓	15
Norbuprenorphine	✓	15
Carboxy-THC	✓	30
Lorazepam	✓	0
Oxazepam	✓	0
Temazepam	✓	0

^{*}Samples were prepared in trilicate using Abalonase Ultra ≥150,000 KU/mL at 55 °C utilizing provided Rapid Hydrolysis Buffer.

Abalonase™ Beta Glucuronidase

PURIFIED BETA-GLUCURONIDASE FORMULA CLEAN, RAPID AND RELIABLE

Abalonase™

Purified Beta-glucuronidase formula that has been designed to quickly hydrolyze conjugated drug metabolites in human samples within minutes.

Part Number	Vol. (mL)	Activity (units)
ASBETA-GLUC-10	10	≥50,000 units/mL
ASBETA-GLUC-25	25	≥50,000 units/mL
ASBETA-GLUC-50	50	≥50,000 units/mL
ASBETA-GLUC-100	100	≥50,000 units/mL

Form: Clear Aqueous Solution Sulfatase Activity: None Storage: +4°C to +8°C Effective pH: 4.5

Stability: When properly stored, the enzyme will maintain activity for at least 1 Year. After 1 year, it is recommended

that the activity level be reassessed.

Abalonase[™] +

Designed for deconjugation of both glucuronidated and sulfated metabolites. The formula is enriched with 4 arylsulfatases making it ideal for the hydrolysis of steroid metabolites.

Part Number	Vol. (mL)	Activity (units)
ASFBETA-GLUC-10	10	≥50,000 units/mL
ASFBETA-GLUC-25	25	≥50,000 units/mL
ASFBETA-GLUC-50	50	≥50,000 units/mL
ASFBETA-GLUC-100	100	≥50,000 units/mL

Form: Clear Aqueous Solution Sulfatase Activity: > 400 U/mL

Storage: +4°C to +8°C Effective pH: 5.0

Stability: When properly stored, the enzyme will maintain activity for at least 1 year. After 1 year, it is recommended that the activity level be reassessed.

Shown from left to right: Abalonase™ purified Beta-glucuronidase formula, Selectrazyme® and Red Abalone Beta-Glucuronidase enzyme from an alternate supplier

Rapid Hydrolysis Buffer included in every order.

Every Abalonase™ and Abalonase™ + purified Beta-glucuronidase formula comes with a Rapid Hydrolysis Buffer to be used at your convenience. Through its usage, both purified Beta-glucuronidase formulas will achieve their maximum performance and it will significantly reduce sample preparation times and use of alternate reagents in addition to minimizing buffer preparation errors.

Abalonase™ Beta Glucuronidase

Abalone derived ß-glucuronidase has been used for the enzymatic hydrolysis of glucuronides from urine, blood and serum prior to analysis by enzyme immunoassay, mass spectrometry, high performance liquid chromatography, and other means. Typically, between 1 to 10 units of glucuronidase is used per microliter of the sample matrix. The exact amount needed will depend on the specific conditions used and must be determined empirically.

Abalone derived ß-glucuronidase is a crude solution of enzymes. Many ß-glucuronidases derived from mollusks also contain sulfatase activity. For this reason, the sulfatase activity of the material is also determined. Abalone derived ß-glucuronidase is more thermal tolerant as compared to enzymes derived from E. coli, H. pomatia and bovine liver. Therefore the hydrolysis reaction can be carried out at a higher temperature providing hydrolysis in less time and achieving a higher degree of hydrolysis of metabolites like morphine-3-glucuronide.

Liquid Form

Glucuronidase Activity: \geq 100,000 units per mL. Unit Definition: One unit will liberate 1.0 µg of phenolphthalein from phenolphthalein glucuronide per hour at 37 °C at pH 5.0 (30 min assay).

Sulfatase Activity: \leq 8,000 units per mL. Unit Definition: One unit of sulfatase will hydrolyze 1.0 µmole p-nitrocatechol sulfate per hour at 37 °C at pH 5.0.

Storage / Stability

Store at +2 to +8 °C. When stored at +2 to +8 °C, the enzyme retains activity for at least 1 year. After this period we recommend retesting the activity.

Liquid				
Part Number Vol. (mL) Activity (units)				
BETA-GLUC-10	10	≥100,000units/mL		
BETA-GLUC-25	25	≥100,000units/mL		
RETA-GLUC-50	50	>100 000unite/ml		

Solid Form

Glucuronidase Activity: 1,000,000 to 3,500,000 units per gram.

Unit Definition: One unit will liberate 1.0 μg of phenolphthalein from phenolphthalein glucuronide per hour at 37 °C at pH 5.0 (30 min assay).

Sulfatase Activity: ≤ 150,000 units per gram.
Unit Definition: One unit of sulfatase will hydrolyze 1.0 µmole p-nitrocatechol sulfate per hour at 37 °C at pH 5.0.

Storage / Stability

Store at -20 °C. When stored at -20 °C, the enzyme retains activity for at least 3 years. After this period we recommend retesting the activity.

Lyophilized Powder		
Part Number Activity (units)		
BETA-GLUC-250KU	250,000	
BETA-GLUC-500KU	500,000	
BETA-GLUC-1MU	1,000,000	
BETA-GLUC-2MU 2,000,000		

SELECT pH Buffer Pouches

To help simplify the process of sample preparation, UCT has developed a line of 'ready-to-use' phosphate and acetate buffer pouches. The UCT buffer pouches are a convenient way of accurately preparing the necessary reagents, at the proper pH and concentration, for solid phase extraction methods. These premeasured pouches eliminate time and more importantly, any potential error in the buffer preparation, insuring the highest efficiency in the extraction method. As with all UCT products, these buffer pouches are prepared with the same high quality standards used in the manufacture of the entire line of SPE products.

SELECT pH BUFFER POUCHES 100mM ACETATE pH 4.5

Instructions: Add 300 mL of deionized water to a 500 mL volumetric flask. Mix in the contents of the buffer pouch and shake/stir well. Add 3.24 mL of glacial acetic acid to the volumetric flask and dilute to the mark with deionized water. Ensure pH is 4.5+/-0.5.

Yield: 500 mL of solution

Contents	Units per Pack	Part Number
5.86 g Sodium Acetate Trihydrate	10	SPHACE4501-10

SELECT pH BUFFER POUCHES 100mM ACETATE pH 5.00

Instructions: Add 300 mL of deionized water to a 500 mL volumetric flask. Mix in the contents of the buffer pouch and shake/stir well. Add 1.04 mL of glacial acetic acid to the volumetric flask and dilute to the mark with deionized water. Ensure pH is 5.0+/-0.5.

Yield: 500 mL of solution

Contents	Units per Pack	Part Number
4.29 g Sodium Acetate Trihydrate	10	SPHACE5001-10

SELECT pH BUFFER POUCHES 1M ACETATE pH 5.0

Instructions: Add 300 mL of deionized water to a 500 mL volumetric flask. Mix in the contents of the buffer pouch and shake/stir well. Add 10.4 mL of glacial acetic acid to the volumetric flask and dilute to the mark with deionized water. Ensure pH is 5.0+/-0.5.

Yield: 500 mL of solution

Contents	Units per Pack	Part Number
42.9 g Sodium Acetate Trihydrate	10	SPHACE5010-10

SELECT pH BUFFER POUCHES 100mM PHOSPHATE pH 6.0

Instructions: Add 600 mL of deionized water to a 1000 mL volumetric flask. Add in the contents of the buffer pouch and mix/stir. Dilute to the mark with deionized water. Ensure the pH is 6.0+/-0.5. Yield: 1000 mL of solution

Contents	Units per Pack	Part Number
1.70 g Disodium Hydrogen Phosphate and 12.14 g Sodium Dihydrogen Phosphate Hydrate	10	SPHPHO6001-10

SELECT pH BUFFER POUCHES 100mM PHOSPHATE pH 7.0

Instructions: Add 600 mL of deionized water to a 1000 mL volumetric flask. Add in the contents of the buffer pouch and mix/stir. Dilute to the mark with deionized water. Ensure the pH is 7.0+/-0.5. Yield: 1000 mL of solution

Contents	Units per Pack	Part Number
7.82 g Disodium Hydrogen Phosphate and 6.22 g Sodium	10	SPHPHO7001-10
Dihydrogen Phosphate Hydrate		

Selectra HPLC Columns

The SELECTRA® line of HPLC columns is created using an ultra-high purity, Type B, spherical silica. This support material minimizes surface activity and allows for high density functional group bonding.

Columns are available with either 1.8, 3, or 5 µm particle sizes.

Guard Column Holder			
Description Part Number			
HPLC Guard Cartridge Holder	SLGRDHLDR		
UHPLC Guard Cartridge Holder	SLGRDHLDR-HP		
Replacement Peek Tip for Holder	SLGRDHLDR-TIP (2/pk)		

SE	LEC	TR	A ° I	DA

- Unique polyaromatic phase
- Excellent Selectivity for a wide range of therapeutic drugs, drugs of abuse, mycotoxins and pesticides
- Ability to retain compounds that can be difficult to retain on a C18
- Can achieve significant selectivity changes with the choice of acetonitrile or methanol as the organic solvent
- Carbon Load 13%
- Conforms to USP L11

SELECTRA° DA			
Column Length (mm)	Column i.d. (mm)	Particle Size	Part Number
50	2.1	1.8 µm	SLDA50ID21-18UM
100	2.1	1.8 µm	SLDA100ID21-18UM
50	4.6	1.8 µm	SLDA50ID46-18UM
100	4.6	1.8 µm	SLDA100ID46-18UM
50	2.1	3 µm	SLDA50ID21-3UM
100	2.1	3 µm	SLDA100ID21-3UM
50	4.6	3 µm	SLDA50ID46-3UM
100	4.6	3 µm	SLDA100ID46-3UM
150	4.6	3 µm	SLDA150ID46-3UM
50	2.1	5 µm	SLDA50ID21-5UM
100	2.1	5 µm	SLDA100ID21-5UM
50	4.6	5 µm	SLDA50ID46-5UM
100	4.6	5 µm	SLDA100ID46-5UM
150	4.6	5 µm	SLDA150ID46-5UM
250	4.6	5 µm	SLDA250ID46-5UM
	Guard Colum	nns (2/pack)*	
10	2.0	1.8 µm	SLDAGDC20-18UM
10	2.0	3 µm	SLDAGDC21-3UM
10	2.0	5 µm	SLDAGDC21-5UM
10	4.6	1.8 µm	SLDAGDC46-18UM
10	4.6	3 µm	SLDAGDC46-3UM
10	4.6	5 µm	SLDAGDC46-5UM

 $^{^{}f *}$ Guard columns must be used with a UCT guard cartridge holder.

CEI		TO	A ⊗	EtG
\sim \sim	I F(ıк	Δ	⊢T(¬
-			$\boldsymbol{\cap}$	$-\iota\iota$

- Unique polar embedded phase for enhanced retention of alcohol metabolites EtG/EtS
- Suitable in up to 100% aqueous mobile phases
- Carbon Load 10%
- · Conforms to USP L1

	SELECT	RA [®] EtG		
Column Length (mm)	Column i.d. (mm)	Particle Size	Part Number	
100	2.1	3 µm	SLETG100ID21-3UM	
Guard Column (2/pack)				
10	2.0	3 µm	SLETGGDC20-3UM	

Selectra HPLC Columns

SELECTRA® C18

- Good choice for converting current C18 methods
- Suitable for most traditional reverse phase analyses
- · Excellent Carbon loading
- · Fully end-capped
- Carbon Load 20%
- · Conforms to USP L1

SELECTRA® C18 **Column Length** Column i.d. **Particle Part Number** (mm) (mm) Size SLC-1850ID21-18UM 50 2.1 1.8 µm 100 2.1 1.8 µm SLC-18100ID21-18UM 50 4.6 1.8 µm SLC-1850ID46-18UM 100 1.8 µm SLC-18100ID46-18UM 50 2.1 3 µm SLC-1850ID21-3UM 100 2.1 3 µm SLC-18100ID21-3UM 50 4.6 3 µm SLC-1850ID46-3UM SLC-18100ID46-3UM 100 4.6 3 µm 150 4.6 SLC-18150ID46-3UM 3 µm 50 2.1 5 µm SLC-1850ID21-5UM SLC-18100ID21-5UM 100 2.1 5 µm 50 4.6 SLC-1850ID46-5UM 5 µm 100 4.6 5 µm SLC-18100ID46-5UM 150 4.6 5 µm SLC-18150ID46-5UM 4.6 SLC-18250ID46-5UM 250 5 µm Guard Columns (2/pack)* 10 2.0 SLC-18GDC20-18UM 1.8 µm 10 2.0 3 µm SLC-18GDC20-3UM 10 2.0 5 µm SLC-18GDC20-5UM 10 4.6 1.8 µm SLC-18GDC46-18UM 10 4.6 SLC-18GDC46-3UM 3 µm 10 5 µm SLC-18GDC46-5UM

SELECTRA® PFPP

- Can be used for Reverse Phase, Normal Phase, or HILIC separations
- Excellent first choice column for method development
- Excellent column for LC/MS/MS analyses
- · Strongly retentive for basic compounds
- Special selectivity versus C18
- May exhibit pi-pi overlap
- Fully endcapped
- Carbon Load 11%
- · Conforms to USP L43

SELECTRA® PFPP				
Column Length (mm)	Column i.d. (mm)	Particle Size	Part Number	
50	2.1	1.8 µm	SLPFPP50ID21-18UM	
100	2.1	1.8 µm	SLPFPP100ID21-18UM	
50	4.6	1.8 µm	SLPFPP50ID46-18UM	
100	4.6	1.8 µm	SLPFPP100ID46-18UM	
50	2.1	3 µm	SLPFPP50ID21-3UM	
100	2.1	3 µm	SLPFPP100ID21-3UM	
50	4.6	3 µm	SLPFPP50ID46-3UM	
100	4.6	3 µm	SLPFPP100ID46-3UM	
150	4.6	3 µm	SLPFPP150ID46-3UM	
50	2.1	5 µm	SLPFPP50ID21-5UM	
100	2.1	5 µm	SLPFPP100ID21-5UM	
50	4.6	5 µm	SLPFPP50ID46-5UM	
100	4.6	5 µm	SLPFPP100ID46-5UM	
150	4.6	5 µm	SLPFPP150ID46-5UM	
250	4.6	5 µm	SLPFPP250ID46-5UM	
	Guard Colu	ımns (2/pack)*	
10	2.0	1.8 µm	SLPFPPGDC20-18UM	
10	2.0	3 µm	SLPFPPGDC20-3UM	
10	2.0	5 µm	SLPFPPGDC20-5UM	
10	4.6	1.8 µm	SLPFPPGDC46-18UM	
10	4.6	3 µm	SLPFPPGDC46-3UM	
10	4.6	5 µm	SLPFPPGDC46-5UM	

www.unitedchem.com

Selectra HPLC Columns

SELECTRA® C8

- Selectivity similar to C18 for non-polar compounds
- Less retentive, less hydrophobic than standard C18 column
- · Fully endcapped
- · Carbon Load 12%
- · Conforms to USP L7

SELECTRA° C8 Column i.d. Column Length Particle **Part Number** (mm) (mm) Size 1.8 µm SLC-850ID21-18UM 50 2.1 100 2.1 1.8 µm SLC-8100ID21-18UM 50 4.6 1.8 µm SLC-850ID46-18UM SLC-8100ID46-18UM 4.6 1.8 µm 100 50 2.1 3 µm SLC-850ID21-3UM 100 2.1 3 µm SLC-8100ID21-3UM 50 4.6 3 µm SLC-850ID46-3UM 100 4.6 3 µm SLC-8100ID46-3UM 150 4.6 3 µm SLC-8150ID46-3UM 50 SLC-850ID21-5UM 2.1 5 µm 100 2.1 SLC-8100ID46-5UM 5 µm 50 4.6 5 µm SLC-850ID46-5UM 100 4.6 5 µm SLC-8100ID46-5UM 150 4.6 5 µm SLC-8150ID46-5UM 250 4.6 5 µm SLC-8250ID46-5UM Guard Columns (2/pack)* 10 2.1 1.8 µm SLC-8GDC21-18UM 10 2.1 3 µm SLC-8GDC21-3UM 10 2.1 5 µm SLC-8GDC21-5UM 10 4.6 SLC-8GDC46-18UM 1.8 µm 10 4.6 3 µm SLC-8GDC46-3UM 10 4.6 SLC-8GDC46-5UM 5 µm

SELECTRA® Aqueous C18

- Similar non-polar retention to traditional C18
- · Some selectivity differences for polar analytes,
- Suitable in up to 100% aqueous mobile phases
- · Greater range of mobile phase options
- Carbon Load 10%
- Conforms to USP L1

	SELECTRA® Aqueous C18				
Column Length (mm)	Column i.d. (mm)	Particle Size	Part Number		
50	2.1	1.8 µm	SLAQ50ID21-18UM		
100	2.1	1.8 µm	SLAQ100ID21-18UM		
50	4.6	1.8 µm	SLAQ50ID46-18UM		
100	4.6	1.8 µm	SLAQ100ID46-18UM		
50	2.1	3 µm	SLAQ50ID21-3UM		
100	2.1	3 µm	SLAQ100ID21-3UM		
50	4.6	3 µm	SLAQ50ID46-3UM		
100	4.6	3 µm	SLAQ100ID46-3UM		
150	4.6	3 µm	SLAQ150ID46-3UM		
50	2.1	5 µm	SLAQ50ID21-5UM		
100	2.1	5 µm	SLAQ100ID21-5UM		
50	4.6	5 µm	SLAQ50ID46-5UM		
100	4.6	5 µm	SLAQ100ID46-5UM		
150	4.6	5 µm	SLAQ150ID46-5UM		
250	4.6	5 µm	SLAQ250ID46-5UM		
	Guard Colu	mns (2/pacl	c)*		
10	2.0	1.8	SLAQGDC20-18UM		
10	2.0	3	SLAQGDC20-3UM		
10	2.0	5	SLAQGDC20-5UM		
10	4.6	1.8	SLAQGDC46-18UM		
10	4.6	3	SLAQGDC46-3UM		
10	4.6	5	SLAQGDC46-5UM		

^{*}Guard columns must be used with a UCT guard cartridge holder.

Reservoirs

POLYPROPYLENE RESERVOIRS					
Volume Capacity	Units per Pack	No. of Frits	Porosity of Frits (μm)	Part Number	
1 mL	50	0	N/A	RFV0001P	
1 mL	50	1	10	RFV01F1P	
1 mL	50	2	10	RFV02F1P	
1 mL	50	1	20	RFT01F1P	
1 mL	50	2	20	RFT02F1P	
4 mL	50	0	N/A	RFV0004P	
4 mL	50	1	10	RFV01F4P	
4 mL	50	2	10	RFV02F4P	
4 mL	50	1	20	RFT01F4P	
4 mL	50	2	20	RFT02F4P	
8 mL	50	0	N/A	RFV0008P	
8 mL	50	1	10	RFV01F8P	
8 mL	50	2	10	RFV02F8P	
8 mL	50	1	20	RFT01F8P	
8 mL	50	2	20	RFT02F8P	
10 mL	50	0	N/A	RFV0010P	
10 mL	50	1	10	RFV1F10P	
10 mL	50	2	10	RFV2F10P	
10 mL	50	1	20	RFT1F10P	
10 mL	50	2	20	RFT2F10P	
15 mL	50	0	N/A	RFV0015P	
15 mL	50	1	10	RFV1F15P	
15 mL	50	2	10	RFV2F15P	
15 mL	50	1	20	RFT1F15P	
15 mL	50	2	20	RFT2F15P	
25 mL	50	0	N/A	RFV0025P	
25 mL	50	1	10	RFV1F25P	
25 mL	50	2	10	RFV2F25P	
25 mL	50	1	20	RFT1F25P	
75 mL	20	0	N/A	RFV0075P	
75 mL	20	1	20	RFT1F75P	
150 mL	10	0	N/A	RFV00150P	
150 mL	10	1	20	RFT1F150P	

Reservoirs

FLANGELESS POLYPROPYLENE RESERVOIRS							
Volume Units per No. of Frits Porosity of Frits Part Number (μm)							
4 mL	50	0	N/A	RFT00R3P			
4 mL	50	1	20	RFT1FR3P			
10 mL	50	1	20	RFT1FR10P			

GLASS RESERVOIRS							
Volume Units per Capacity No. of Frits Porosity of Frits (μm) Part Numb							
8 mL	30	0	N/A	RFV0008G			
8 mL	30	1	10	RFV01F8G			

Well Plates

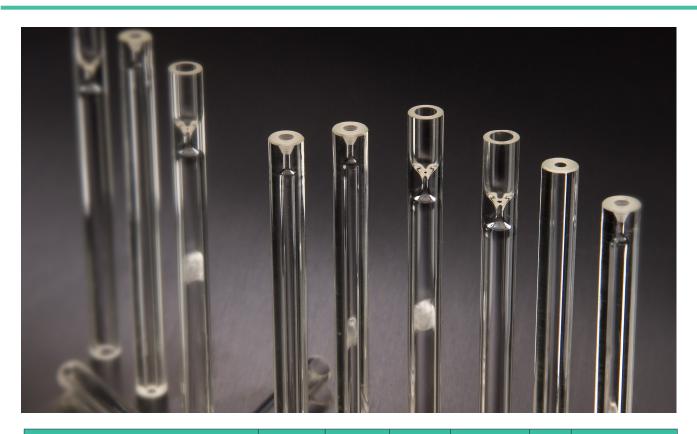
48 DEEP WELL FILTER PLATES						
Description Part Number Units						
Empty 48 deep well plate with one frit inserted	WIM481F	1				
Loose 48 deep well plate square frits	FR10481P	48				
48 deep well collection plate	WIM48CP	1				

96 DEEP WELL FILTER PLATES						
Description	Part Number	Units				
Empty 96 deep well plate with one frit inserted	WSH961FR	1				
Loose 96 deep well plate square frits	FRSH2096P	96				
96 well collection plate	WSH96CP	1				
96 well plate sealable lid	WSH96PS	1				

POLYPROPYLENE CARTRIDGES							
Volume Capacity	Part Number						
600 mg (Medium)	50	0	N/A	RFV000MC			
600 mg (Medium)	50	2	20	RFT02FMC			
900 mg (Large)	50	0	N/A	RFV000LC			
900 mg (Large)	50	2	20	RFT02FLC			

Frits

POLYETHYLENE FRITS							
Column Size	Diameter	Porosity	Thickness	Units	Part Number		
1 mL	0.232"	10 μm	1/16"	100	FR10011P		
1 mL	0.232"	20 μm	1/16"	100	FR20011P		
1 mL	0.232"	20 μm	1/8"	100	FT20011P		
4 mL	0.357"	7 μm	1/16"	100	FR07041P		
4 mL	0.357"	10 μm	1/16"	100	FR10041P		
4 mL	0.357"	20 μm	1/16"	100	FR20041P		
4 mL	0.357"	20 μm	1/8"	100	FT20041P		
4 mL	0.357"	100 μm	1/16"	100	FR100041P		
8 mL	0.498"	10 μm	1/16"	100	FR10081P		
8 mL	0.498"	20 μm	1/16"	100	FR20081P		
8 mL	0.513"	20 μm	1/8″	100	FT20081P		
10 mL	0.357"	10 μm	1/16"	100	FR10101P		
10 mL	0.357"	20 μm	1/16"	100	FR20101P		
10 mL	0.357"	20 μm	1/8″	100	FT20101P		
15 mL	0.630"	10 μm	1/16"	100	FR10151P		
15 mL	0.641"	20 μm	1/16"	100	FR20151P		
15 mL	0.641"	20 μm	1/8″	100	FT20151P		
25 mL	0.792"	10 μm	1/16"	100	FR10251P		
25 mL	0.816"	20 μm	1/8"	100	FT20251P		
75 mL	1.050"	20 μm	1/16"	100	FR20751P		
75 mL	1.050"	20 μm	1/8"	100	FT20751P		
150 mL	1.515"	20 μm	1/16"	20	FR201501P		
150 mL	1.515"	20 μm	1/8"	20	FT201501P		
		PTI	E FRITS				
Column Size	Diameter	Porosity	Thickness	Units	Part Number		
4 mL	0.357"	10 μm	1.5 mm	60	FR10041T		
8 mL	0.498"	10 μm	1.5 mm	60	FR10081T		
8 mL	0.498"	50 μm	1.5 mm	60	FR50081T		
15 mL	0.641"	10 μm	1.5 mm	60	FR10151T		
15 mL	0.641"	50 μm	1.5 mm	100	FR50151T		


GC Liners

Gas Chromatograph Glass Liners manufactured by UCT are deactivated using a proprietary silane. The silane is manufactured by UCT Specialties, LLC, a leader in high purity, specialty silanes for the chromatographic industry.

DESCRIPTION	INNER DIAMETER (mm)	OUTER DIAMETER (mm)	LENGTH (mm)	INSTRUMENT	UNITS	UCT Part Number
2 mm Straight Split/Splitless	2.0	6.5	78.5	Agilent	1 5 25	GCL2MM GCL2MM-5 GCL2MM-25
2 mm Straight Split/Splitless with Deactivated Glass Wool	2.0	6.5	78.5	Agilent	1 5 25	GCL2MMGW-5 GCL2MMGW-25
2 mm Gooseneck Split/Splitless	2.0	6.5	78.5	Agilent	1 5 25	GCLGN2MM GCLGN2MM-5 GCLGN2MM-25
2 mm Gooseneck Split/Splitless with Deactivated Glass Wool	2.0	6.5	78.5	Agilent	1 5 25	GCLGN2MMGW GCLGN2MMGW-5 GCLGN2MMGW-25
4 mm Straight Split/Splitless	4.0	6.5	78.5	Agilent	1 5 25	GCL4MM GCL4MM-5 GCL4MM-25
4 mm Straight Split/Splitless with Deactivated Glass Wool	4.0	6.5	78.5	Agilent	1 5 25	GCL4MMGW-5 GCL4MMGW-25
4 mm Recessed Gooseneck Split/Splitless	4.0	6.5	78.5	Agilent	1 5 25	GCLRG4MM GCLRG4MM-5 GCLRG4MM-25

GC Liners

DESCRIPTION	INNER DIAMETER (mm)	OUTER DIAMETER (mm)	LENGTH (mm)	INSTRUMENT	UNITS	UCT Part Number
4 mm Recessed Gooseneck Split/Splitless with Deactivated Glass Wool	4.0	6.5	78.5	Agilent	1 5 25	GCLRG4MMGW-5 GCLRG4MMGW-25
4 mm Gooseneck Split/Splitless	4.0	6.5	78.5	Agilent	1 5 25	GCLGN4MM GCLGN4MM-5 GCLGN4MM-25
4 mm Gooseneck Split/Splitless with Deactivated Glass Wool	4.0	6.5	78.5	Agilent	1 5 25	GCLGN4MMGW-5 GCLGN4MMGW-25
3.4 mm Straight Split 1078/1079 Inlet	3.4	5.0	54	Varian/ Bruker	1 5 25	GCL3.4MM GCL3.4MM-5 GCL3.4MM-25
3.4 mm Straight Split with Frit Inserted 1078/1079 Inlet	3.4	5.0	54	Varian/ Bruker	1 5 25	GCL3.4MMFR GCL3.4MMFR-25

For more product information, company announcements and industry updates, please do visit any of our Social Media Channels.

